Useful angles: $\cos 0 = 1, \sin 0 = 0$ $\cos \frac{\pi}{2} = 0, \sin \frac{\pi}{2} = 1$ $\cos \pi = -1, \sin 0\pi = 0$ $\cos(\frac{\pi}{6}) = \frac{1}{2}, \sin(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}$ $\cos(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}, \sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}$ $\cos(\frac{\pi}{3}) = \frac{\sqrt{3}}{2}, \sin(\frac{\pi}{3}) = \frac{1}{2}$ #2. a) $\arctan(-1) = -\frac{\pi}{4} \operatorname{since} \tan(\frac{-\pi}{4}) = -1 \operatorname{and} -\frac{\pi}{2} < -\frac{\pi}{4} < \frac{\pi}{2}.$

b)
$$\arctan \sqrt{3} = \frac{\pi}{6} \operatorname{since} \tan(\frac{\pi}{6}) = \sqrt{3}$$

c) $\arctan \frac{-1}{\sqrt{3}} = -\frac{\pi}{3} \operatorname{since} \tan(-\frac{\pi}{3}) = -\frac{1}{\sqrt{3}}$

- #19. $\tan\left(\arcsin\left(-\frac{1}{2}\right)\right) = ?$ But $\arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{3}$ since $\sin\left(-frac\pi 3\right) = -frac12$, so $\tan\left(\arcsin\left(-\frac{1}{2}\right)\right) = \tan\left(-\frac{\pi}{3}\right) = -\tan\left(\frac{\pi}{3}\right) = \frac{-1}{\sqrt{3}}.$
- #31. $\tan(\operatorname{arcsec}(3y)) = ?$. Set up a right triangle with one angle θ with $\sec \theta = 3y$. Then $(3y)^2 = \tan^2(3y) + 1$, so $\tan(3y) = \sqrt{9y^2 1}$.
- #41. $\lim_{\substack{x \to 1^- \\ \lim_{x \to \frac{\pi}{2}^-}} \operatorname{since} the inverse of a continuous function is continuous and$
- #43. $\lim_{x \to \infty} \arctan x = \frac{\pi}{2}$ since $\lim_{x \to \frac{\pi}{2}^{-}} \tan x = \infty$.
- #49. Let β be the angle with sides x and 3 from the picture on page 511 in the book. Then $\cot \beta = \frac{x}{3}$ and $\cot(\alpha + \beta) = \frac{x}{3+12} = \frac{x}{15}$ so $\alpha + \beta = \operatorname{arccot}(\frac{x}{15})$ and $\beta = \operatorname{arccot}(\frac{x}{3})$ so $\alpha = \operatorname{arccot}(\frac{x}{15}) \operatorname{arccot}(\frac{x}{3})$.