§6.8

Useful angles:

$$
\begin{aligned}
& \cos 0=1, \sin 0=0 \\
& \cos \frac{\pi}{2}=0, \sin \frac{\pi}{2}=1 \\
& \cos \pi=-1, \sin 0 \pi=0 \\
& \cos \left(\frac{\pi}{6}\right)=\frac{1}{2}, \sin \left(\frac{\pi}{6}\right)=\frac{\sqrt{3}}{2} \\
& \cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}, \sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \\
& \cos \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}, \sin \left(\frac{\pi}{3}\right)=\frac{1}{2}
\end{aligned}
$$

\#2. a) $\arctan (-1)=-\frac{\pi}{4}$ since $\tan \left(\frac{-\pi}{4}\right)=-1$ and $-\frac{\pi}{2}<-\frac{\pi}{4}<\frac{\pi}{2}$.
b) $\arctan \sqrt{3}=\frac{\pi}{6}$ since $\tan \left(\frac{\pi}{6}\right)=\sqrt{3}$
c) $\arctan \frac{-1}{\sqrt{3}}=-\frac{\pi}{3}$ since $\tan \left(-\frac{\pi}{3}\right)=-\frac{1}{\sqrt{3}}$
\#19. $\tan \left(\arcsin \left(-\frac{1}{2}\right)\right)=$? But $\arcsin \left(-\frac{1}{2}\right)=-\frac{\pi}{3}$ since $\sin (-f r a c \pi 3)=-$ frac12, so $\tan \left(\arcsin \left(-\frac{1}{2}\right)\right)=\tan \left(-\frac{\pi}{3}\right)=-\tan \left(\frac{\pi}{3}\right)=\frac{-1}{\sqrt{3}}$.
$\# 31$. $\tan (\operatorname{arcsec}(3 y))=$?. Set up a right triangle with one angle θ with $\sec \theta=3 y$. Then $(3 y)^{2}=\tan ^{2}(3 y)+1$, so $\tan (3 y)=\sqrt{9 y^{2}-1}$.
\#41. $\lim _{x \rightarrow 1^{-}} \arcsin x=\frac{\pi}{2}$ since the inverse of a continuous function is continuous and $\lim _{x \rightarrow \frac{\pi}{2}-} \sin x=1$.
\#43. $\lim _{x \rightarrow \infty} \arctan x=\frac{\pi}{2}$ since $\lim _{x \rightarrow \frac{\pi}{2}-} \tan x=\infty$.
\#49. Let β be the angle with sides x and 3 from the picture on page 511 in the book. Then $\cot \beta=\frac{x}{3}$ and $\cot (\alpha+\beta)=\frac{x}{3+12}=\frac{x}{15}$ so $\alpha+\beta=\operatorname{arccot}\left(\frac{x}{15}\right)$ and $\beta=\operatorname{arccot}\left(\frac{x}{3}\right)$ so $\alpha=\operatorname{arccot}\left(\frac{x}{15}\right)-\operatorname{arccot}\left(\frac{x}{3}\right)$.

