$\S{8.01}$

1.
$$a_n = \frac{1-n}{n^2}$$
 so $a_1 = \frac{1-1}{1^2} = 0$; $a_2 = \frac{1-2}{2^2} = -\frac{1}{4}$; $a_3 = \frac{1-3}{3^2} = -\frac{2}{9}$;
 $a_4 = \frac{1-4}{4^2} = -\frac{3}{16}$.
9. $a_1 = 2, a_{n+1} = (-1)^{n+1}a_n/2. a_1 = 2$; $a_2 = (-1)^{1+1}\frac{2}{2} = 1$;
 $a_3 = (-1)^{2+1}\frac{1}{2} = -\frac{1}{2}$; $a_4 = (-1)^{3+1}\frac{-1}{2} = -\frac{1}{4}$; $a_5 = (-1)^{4+1}\frac{-1}{2} = \frac{1}{8}$;
 $a_6 = (-1)^{5+1}\frac{1}{2} = \frac{1}{16}$; $a_7 = (-1)^{6+1}\frac{1}{16} = -\frac{1}{32}$; $a_8 = (-1)^{7+1}\frac{-1}{2^2} = -\frac{1}{64}$;
 $a_9 = (-1)^{8+1}\frac{-1}{2^4} = \frac{1}{128}$; $a_{10} = (-1)^{9+1}\frac{1}{128} = \frac{1}{256}$.
15. The sequence $1, -4, 9, -16, 25, \dots$ Squares of the positive integers with alternating signs. $\boxed{a_n = (-1)^{n+1}n^2, n \ge 1}$. Note $a_n = (-1)^{n}n^2$ has the same verbal discription but does not have the correct first value.
33. $a_n = \frac{2^n 3^n}{n!}$. We can rewrite this as $a_n = \frac{2 \cdot 3}{1} \cdot \frac{2 \cdot 3}{2} \cdots \frac{2 \cdot 3}{n}$ so $a_{n+1} = a_n \cdot \frac{6}{n+1}$. For $n \ge 6, \frac{6}{n+1} < 1$ so $a_{n+1} < a_n$. In particular, the sequence is bounded from above by $a_5 = 6 \cdot 3 \cdot 2 \cdot \frac{3}{2} \cdot \frac{6}{5} = \frac{36}{3} = \frac{34}{3} = 62.8$. For $n \ge 6$ the sequence is decreasing, hence not non-decreasing. More interestingly, the sequence is bounded below by 0 and since it is decreasing. More interestingly, the sequence is bounded below by 0 and since it is decreasing. More interestingly, the sequence is decreasing. No can compute the limit as follows. Let $\lim_{n\to\infty} a_n = L$. Then $\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n \frac{6}{n+1} = (\lim_{n\to\infty} a_n) \cdot (\lim_{n\to\infty} \frac{6}{n+1}) = L \cdot 0$ so $L = 0$.
37. $a_n = \frac{2^n - 1}{2^n}$. There are at least two ways to proceed. One way is to rewrite $a_n = 1 - \frac{1}{2^n}$, $a_{n\to\infty} \frac{2^n - 1}{2^n} = \lim_{n\to\infty} \frac{1-2}{2^n} = 1 - \lim_{n\to\infty} \frac{2^n - 1}{2^n} = \lim_{n\to\infty} 2^n = 1 - \lim_{n\to\infty} 2^n = 1 - 0 = 1$ since you are supposed to know $\lim_{n\to\infty} \frac{1}{2^n} = 0$. The second way is via L'Hôpital's Rule since $\lim_{n\to\infty} 2^n - 1 = \lim_{n\to\infty} 2^n = \infty$.
Hence $\lim_{n\to\infty} \frac{2^n - 1}{2^n} = \lim_{n\to\infty} \frac{(\ln 2)2^n - 0}{(\ln 2)2^n} = \lim_{n\to\infty} 1 = 1$. Hence the sequence converges because we hav

 $\frac{\ln 2}{2^x} > 0$, so f(x) is an increasing function and hence a_n is an increasing sequence. Since $2^n - 1 < 2^n$, $a_n < 1$ so the sequence is an increasing, bounded sequence and hence converges. # 39. $a_n = (1+(1-)^n) \left(\frac{n}{n+1}\right)$. Start by noticing that for n odd, $a_n = 0$ since $1+(-1)^n = 0$. Hence, if $\lim_{n \to \infty} a_n$ exists, it must be 0 since the subsequence $\{a_{2n+1}\}$ converges to 0. (1. on page 618). Next consider the subsequence $\{a_{2n}\}$. $a_{2n} = 2 \cdot \frac{2n}{2n+1}$ and $\lim_{n \to \infty} 2 \cdot \frac{2n}{2n+1}$ can be computed via L'Hôpital's Rule or by $\lim_{n \to \infty} 2 \cdot \frac{2n}{2n+1} = \lim_{n \to \infty} \frac{4}{2+\frac{1}{n}} = \frac{4}{2+0} = 2$. Since we have two subsequences which converge to two different limits, $\lim_{n \to \infty} a_n$ does not exist. (2. on page 618).