\# 5. $a_{n}=\frac{1-5 n^{4}}{n^{4}+8 n^{3}}$. Either use L'Hôpital's Rule four times or rewrite $a_{n}=\frac{\frac{1}{n^{4}}-5}{1+8 \frac{n^{3}}{n^{4}}}=$ $\frac{\frac{1}{n^{4}}-5}{1+8 \frac{1}{n}}=\frac{0-5}{1+8 \cdot 0}=-5$. Since we have computed the limit, the sequence converges. \# 7. $a_{n}=\frac{n^{2}-2 n+1}{n-1}$. You can use L'Hôpital's Rule or else $a_{n}=\frac{n^{2}-2 n+1}{n-1}=$ $\frac{(n-1)^{2}}{n-1}=n-1$ so $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} n-1=\infty$ so the sequence diverges. Another way to rewrite a_{n} is $a_{n}=n \cdot \frac{\frac{n^{2}}{n^{2}}-2 \cdot \frac{n}{n^{2}}+\frac{1}{n^{2}}}{\frac{n}{n}-\frac{1}{n}}=n \cdot \frac{1-2 \cdot \frac{1}{n}+\frac{1}{n^{2}}}{1-\frac{1}{n}}$. Now $\lim _{n \rightarrow \infty} \frac{1-2 \cdot \frac{1}{n}+\frac{1}{n^{2}}}{1-\frac{1}{n}}=1$ so $\lim _{n \rightarrow \infty} a_{n}=\left(\lim _{n \rightarrow \infty} n\right) \cdot\left(\lim _{n \rightarrow \infty} \frac{1-2 \cdot \frac{1}{n}+\frac{1}{n^{2}}}{1-\frac{1}{n}}\right)=\infty \cdot 1=\infty$.
\# 11. $a_{n}=\left(\frac{n+1}{2 n}\right)\left(1-\frac{1}{n}\right) . \lim _{n \rightarrow \infty} a_{n}=\left(\lim _{n \rightarrow \infty} \frac{n+1}{2 n}\right)\left(\lim _{n \rightarrow \infty} 1-\frac{1}{n}\right)=\frac{1}{2} \cdot 1=\frac{1}{2}$. This computation shows that the sequence converges to $\frac{1}{2}$.
\# 15. $a_{n}=\sqrt{\frac{2 n}{n+1}}$. First do any easier computation: $\lim _{n \rightarrow \infty} \frac{2 n}{n+1}=\lim _{n \rightarrow \infty} \frac{2}{1+\frac{1}{n}}=$ 2. Since the square root function is continuous at 2 , the sequence converges and $\lim _{n \rightarrow \infty} \sqrt{\frac{2 n}{n+1}}=\sqrt{\frac{2 n}{n+1}}=\sqrt{2}($ see Theorem 4).
\# 27. $a_{n}=\left(1+\frac{7}{n}\right)^{n}$. Study $f(x)=\left(1+\frac{7}{x}\right)^{x}$ for $x>0$ and compute $\lim _{x \rightarrow \infty} f(x)$. This has the form 1^{∞} which is indeterminate. Take the log: $\ln f(x)=x \ln \left(1+\frac{7}{x}\right) \cdot \lim _{x \rightarrow \infty} \ln f(x)$ has the form $\infty \cdot \ln 1=\infty \cdot 0$, which is again indeterminate. Hence rewrite $x \ln (1+$ $\left.\frac{7}{x}\right)=\frac{\ln \left(1+\frac{7}{x}\right)}{\frac{1}{x}}$. To compute $\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{7}{x}\right)}{\frac{1}{x}}$ use L'Hôpital's Rule. $\lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{7}{x}\right)}{\frac{1}{x}}=$ $\lim _{x \rightarrow \infty} \frac{\frac{-\frac{7}{x^{2}}}{1+\frac{7}{x}}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{7}{1+\frac{7}{x}}=7$. Unravelling these calculations, we see $\lim _{x \rightarrow \infty}$
so $\lim _{x \rightarrow \infty} f(x)=e^{7}$ and hence the sequence converges and $\lim _{n \rightarrow \infty} a_{n}=e^{7}$.
\# 37. $a_{n}=\frac{n!}{n^{n}}$. (Hint: compare with $\frac{1}{n}$.) Well, $\frac{n!}{n^{n}}=\frac{1}{n} \cdot \frac{2}{n} \ldots \frac{n-1}{n} \cdot \frac{n}{n}=\frac{1}{n} \cdot\left(\frac{2}{n} \ldots \frac{n-1}{n} \cdot \frac{n}{n}\right)$. The factor $\frac{2}{n} \cdots \frac{n-1}{n} \cdot \frac{n}{n}$ is a product of positive fractions, each of which is less than 1 so $0<\frac{2}{n} \cdots \frac{n-1}{n} \cdot \frac{n}{n}<1$ and hence $0<a_{n}<\frac{1}{n}$. Since $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ the Sandwich Theorem shows that the sequence converges and $\lim _{n \rightarrow \infty} a_{n}=0$.
\# 59. $a_{n}=n-\sqrt{n^{2}-n}$. Study the function $f(x)=x-\sqrt{x^{2}-x}$ and in praticular the limit $\lim _{x \rightarrow \infty} f(x)$. This has the form $\infty-\infty$ so L'Hôpital's Rule techniques can be used. Write $f(x)=x \cdot\left(1-\sqrt{1-\frac{1}{x}}\right)=\frac{1-\sqrt{1-\frac{1}{x}}}{\frac{1}{x}}$. This last expression has the form $\frac{0}{0}$ as $x \rightarrow \infty$ so L'Hôpital's Rule can be applied. $\lim _{x \rightarrow \infty} \frac{1-\sqrt{1-\frac{1}{x}}}{\frac{1}{x}}=\lim _{x \rightarrow \infty} \frac{0-\left(\frac{-\left(-\frac{1}{x^{2}}\right)}{2 \sqrt{1-\frac{1}{x}}}\right)}{-\frac{1}{x^{2}}}=$ $\lim _{x \rightarrow \infty} \frac{1}{2 \sqrt{1-\frac{1}{x}}}=\frac{1}{2 \sqrt{1-0}}=\frac{1}{2}$. Hence the sequence converges and $\lim _{n \rightarrow \infty} a_{n}=\frac{1}{2}$.

