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1-1+2-1++ (—1)"_1% + - -+ For this series find the nth partial sum and

compute the limit to see if the series converges. Now s, =1— 2+ + (=1)""! 2n1,1
since we are supposed to sum n of the terms. By the usual formula for a geometric
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series, sn:?_?%) (1—(—5) ) Hencenh_{glosn:5-1s01—§+1—§+
c 4 (—1)”_12n;,1 + - - converges and is equal to 2.
= (=) 11

=1—-4———+---. This is a geometric series with a =1 and r = —%.
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Since |r| < 1 this series converges and 7;) ( 4n) =1 = = g =
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r = 1. Since |r| < 1, the series converges and Z =1 T 10. Next Z I
n=0 2
is a geometric series with a = 1 and r = % Since |r| < 1 this series converges and
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= = —. Hence — + — | converges to S =%,
vt 3n 1_% 2 vt on 3n g 2 2
N - - ons: 40n _ A
Z 1) 2n el First use partial fractions: @n—1)2(2n 1) ~ 2n—1 +
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@n-12 20 +1 7T @t 1)

1)?2(2n+1)+D(2n—1)?. Pluginn=1;20=4-04+ B(2)?+C-0+D-0or B=5.

Plug in n = —3 to see D = —5. This means 40n = A(2n — 1)(2n + 1)? + C(2n —

1)2@2n+1)+5((2n+1)2—(2n—1)?) = A2n—1)(2n+1)*+C(2n—1)?(2n+1) +40n,

so A(2n—1)(2n+1)>+C(2n —1)?(2n+ 1) = 0, which can only happen if A = C = 0.
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Hence 5 so the series is a telescoping one.
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Z(—) . This is a geometric series with a = 1 and r = % Since v2 > 1,
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Z e~ 2" is a geometric series with a = 1 and r = e~ 2. Since e > 1, ¢? > 1 and |r| < 1.
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' You should always wonder about lim a,. In this case = 1.
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1000 1500~ Tooo- Hence ani1 = an - {55q- Hence the sequence ay, is increasing for

n > 1000. Hence either lim a, = L if the sequence a,, is bounded or else lim a,, =
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lim —— = oo, the only choice for lim a, is co. Hence the series diverges.
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Z 3( 5 ) is a geometric series with a = 3 and r = %’1 The series converges

n=

whenever \7‘]<10r‘x7_1)<1. Hence [r — 1] <2s0 2<z—-1<2o0r -1 <z <3.

Hence the series converges for any number z, —1 < x < 3. We weren’t asked, but we
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can sum this series, 3( ) = = = .
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E 2"zx™ is a geometric series with ¢ = 1 and » = 2x. Hence the series converges
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precisely when [2z| < 1 or —1 < z < . For such z, Z 2" =
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1.24123 = 1.24 + ——. The series ——— is a geometric series with
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