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# 3.
∞∑

n=1

n

n + 1
. First compute lim

n→∞
an = lim

n→∞

n

n + 1
= 1. Hence the series diverges.

# 5.
∞∑

n=1

3√
n

= 3
∞∑

n=1

1

n1/2
. Now

∞∑
n=1

1

n1/2
is a p–series with p = 1

2 and since 1
2 < 1, it

diverges. Hence the original series diverges.

# 11.
∞∑

n=1

2n

3n is a geometric series with r = 2
3 . Since 2

3 < 1, this series converges.

# 21.
∞∑

n=3

1/n

(lnn)
√

ln2 n− 1
. We want to use the Integral Test with f(x) = 1

x(lnx)
√

ln2 x− 1
.

First we need to check that f(x) is non–negative and decreasing. Equivalently,
we can check that x(lnx)

√
ln2 x− 1 is non–negative and increasing. Both x and

lnx are positive and increasing for x > 1; it follows that ln2 x − 1 is also increas-
ing and hence

√
ln2 x− 1 is also increasing if lnx > 1 or x > e. Therefore, for

x ≥ 3, the product of x(lnx)
√

lnx−1 is positive and increasing. Hence the se-

ries converges or diverges provided
∫ ∞

3

1

x(lnx)
√

ln2 x− 1
dx converges or diverges.

Rather than do this integral directly, we use the Limit Comparison Test on the

function g(x) = 1
x ln2x

. First compute lim
x→∞

f(x)
g(x)

= lim
x→∞

1
x(lnx)

√
ln2 x− 1
1

x ln2x

=

lim
x→∞

lnx√
ln2 x− 1

= lim
x→∞

1√
1− 1

ln2 x

= 1. The integral
∫

dx

x ln2 x
can be done by the

susbtitution u = lnx, du = dx
x so

∫
dx

x ln2 x
=

∫
du

u2 = −u−1 + C = − 1
lnx

+ C so∫ ∞

3

dx

x ln2 x
= lim

t→∞
− 1

ln t
− (− 1

ln 3
) =

1

ln 3
so the improper integral converges. It follows

from the Limit Comparison Test that
∫ ∞

3

dx

x(lnx)
√

ln2 x− 1
converges and therefore

the series converges.
The original integral can also be done by the same substitution, u = ln x: the integral

becomes
∫

1

x(lnx)
√

ln2 x− 1
dx =

∫
1

u
√

u2 − 1
du = arcsecu + C = arcsec(lnx) + C.

Hence
∫ ∞

3

1

x(lnx)
√

ln2 x− 1
dx converges if and only if lim

x→∞
arcsec(lnx) exits and is finite.

Since lim
x→∞

lnx = ∞, lim
x→∞

arcsec(lnx) = lim
t→∞

arcsec(t) =
π

2
. Hence

∫ ∞

3

1

x(lnx)
√

ln2 x− 1
dx

converges, as does the series.
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# 33. a1 = 1, an+1 = 1 + lnn
n an: does

∞∑
n=1

an converge or diverge? The Ratio Test ap-

pears the way to go since from the definition, an+1
an

= 1 + lnn
n . Hence lim

n→∞

an+1

an
=

lim
n→∞

1

n
+ lim

n→∞

ln n

n
and lim

n→∞

1

n
= 0 and lim

n→∞

ln n

n
= 0 so lim

n→∞

an+1

an
= 0 and the series

converges.

# 39.
∞∑

n=1

(n!)n

(nn)2
. We rewrite the nth term of the series so as to get an idea of how fast it is

going to 0. First write (n!)n

(nn)2
=

(
n!
n2

)n

. Now apply the Root Test: lim
n→∞

n

√
(n!)n

(nn)2
=

lim
n→∞

n!
n2 . Then note that n!

n2 = (n − 2)! · n−1
n = (n − 3)! · (n−2)(n−1)

n . If n ≥ 4,

(n−2)(n−1)
n > 1 and (n− 3)! ≥ n− 3 so n!

n2 > n− 3 and lim
n→∞

n!
n2 = ∞. In particular,

the series diverges.

# 41.
∞∑

n=1

nn

2n2 . As in #39, let us start by studying nn

2n2 . 2n2
= 2n·n =

(
2n

)n. Hence nn

2n2 =

(
n
2n

)n

. The Root Test again appears the way to go: lim
n→∞

n

√
nn

2n2 = lim
n→∞

n

2n = 0

where this last limit can be evaluated by L’Hôpital’s Rule if you don’t remember
that an exponential function with a base greater than 1 increases faster than any
polynomial. Hence the series converges.
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