\#3. $\sum_{n=1}^{\infty} \frac{n}{n+1}$. First compute $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \frac{n}{n+1}=1$. Hence the series diverges.
\# 5. $\sum_{n=1}^{\infty} \frac{3}{\sqrt{n}}=3 \sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$. Now $\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}$ is a p-series with $p=\frac{1}{2}$ and since $\frac{1}{2}<1$, it diverges. Hence the original series diverges.
\# 11. $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}}$ is a geometric series with $r=\frac{2}{3}$. Since $\frac{2}{3}<1$, this series converges.
\# 21. $\sum_{n=3}^{\infty} \frac{1 / n}{(\ln n) \sqrt{\ln ^{2} n-1}}$. We want to use the Integral Test with $f(x)=\frac{1}{x(\ln x) \sqrt{\ln ^{2} x-1}}$. First we need to check that $f(x)$ is non-negative and decreasing. Equivalently, we can check that $x(\ln x) \sqrt{\ln ^{2} x-1}$ is non-negative and increasing. Both x and $\ln x$ are positive and increasing for $x>1$; it follows that $\ln ^{2} x-1$ is also increasing and hence $\sqrt{\ln ^{2} x-1}$ is also increasing if $\ln x>1$ or $x>e$. Therefore, for $x \geq 3$, the product of $x(\ln x) \sqrt{\ln ^{x}-1}$ is positive and increasing. Hence the series converges or diverges provided $\int_{3}^{\infty} \frac{1}{x(\ln x) \sqrt{\ln ^{2} x-1}} d x$ converges or diverges. Rather than do this integral directly, we use the Limit Comparison Test on the function $g(x)=\frac{1}{x \ln ^{2} x}$. First compute $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x(\ln x) \sqrt{\ln ^{2} x-1}}}{\frac{1}{x \ln ^{2} x}}=$ $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt{\ln ^{2} x-1}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt{1-\frac{1}{\ln ^{2} x}}}=1$. The integral $\int \frac{d x}{x \ln ^{2} x}$ can be done by the susbtitution $u=\ln x, d u=\frac{d x}{x}$ so $\int \frac{d x}{x \ln ^{2} x}=\int \frac{d u}{u^{2}}=-u^{-1}+C=-\frac{1}{\ln x}+C$ so $\int_{3}^{\infty} \frac{d x}{x \ln ^{2} x}=\lim _{t \rightarrow \infty}-\frac{1}{\ln t}-\left(-\frac{1}{\ln 3}\right)=\frac{1}{\ln 3}$ so the improper integral converges. It follows from the Limit Comparison Test that $\int_{3}^{\infty} \frac{d x}{x(\ln x) \sqrt{\ln ^{2} x-1}}$ converges and therefore the series converges.
The original integral can also be done by the same substitution, $u=\ln x$: the integral becomes $\int_{\int_{\infty}^{\infty}}^{x(\ln x) \sqrt{\ln ^{2} x-1}} d x=\int \frac{1}{u \sqrt{u^{2}-1}} d u=\operatorname{arcsec} u+C=\operatorname{arcsec}(\ln x)+C$.
Hence $\int_{3}^{\infty} \frac{1}{x(\ln x) \sqrt{\ln ^{2} x-1}} d x$ converges if and only if $\lim _{x \rightarrow \infty} \operatorname{arcsec}(\ln x)$ exits and is finite.
Since $\lim _{x \rightarrow \infty} \ln x=\infty, \lim _{x \rightarrow \infty} \operatorname{arcsec}(\ln x)=\lim _{t \rightarrow \infty} \operatorname{arcsec}(t)=\frac{\pi}{2}$. Hence $\int_{3}^{\infty} \frac{1}{x(\ln x) \sqrt{\ln ^{2} x-1}} d x$ converges, as does the series.
\# 33. $a_{1}=1, a_{n+1}=\frac{1+\ln n}{n} a_{n}$: does $\sum_{n=1}^{\infty} a_{n}$ converge or diverge? The Ratio Test appears the way to go since from the definition, $\frac{a_{n+1}}{a_{n}}=\frac{1+\ln n}{n}$. Hence $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=$ $\lim _{\substack{n \rightarrow \infty \\ \text { converges. }}} \frac{1}{n}+\lim _{n \rightarrow \infty} \frac{\ln n}{n}$ and $\lim _{n \rightarrow \infty} \frac{1}{n}=0$ and $\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$ so $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=0$ and the series
\# 39. $\sum_{n=1}^{\infty} \frac{(n!)^{n}}{\left(n^{n}\right)^{2}}$. We rewrite the nth term of the series so as to get an idea of how fast it is going to 0. First write $\frac{(n!)^{n}}{\left(n^{n}\right)^{2}}=\left(\frac{n!}{n^{2}}\right)^{n}$. Now apply the Root Test: $\lim _{n \rightarrow \infty} \sqrt[n]{\frac{(n!)^{n}}{\left(n^{n}\right)^{2}}}=$ $\lim _{n \rightarrow \infty} \frac{n!}{n^{2}}$. Then note that $\frac{n!}{n^{2}}=(n-2)!\cdot \frac{n-1}{n}=(n-3)!\cdot \frac{(n-2)(n-1)}{n}$. If $n \geq 4$, $\frac{(n-2)(n-1)}{n}>1$ and $(n-3)!\geq n-3$ so $\frac{n!}{n^{2}}>n-3$ and $\lim _{n \rightarrow \infty} \frac{n!}{n^{2}}=\infty$. In particular, the series diverges.
\# 41. $\sum_{n=1}^{\infty} \frac{n^{n}}{2^{n^{2}}}$. As in \#39, let us start by studying $\frac{n^{n}}{2^{n^{2}}} \cdot 2^{n^{2}}=2^{n \cdot n}=\left(2^{n}\right)^{n}$. Hence $\frac{n^{n}}{2^{n^{2}}}=$ $\left(\frac{n}{2^{n}}\right)^{n}$. The Root Test again appears the way to go: $\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{n}}{2^{n^{2}}}}=\lim _{n \rightarrow \infty} \frac{n}{2^{n}}=0$ where this last limit can be evaluated by L'Hôpital's Rule if you don't remember that an exponential function with a base greater than 1 increases faster than any polynomial. Hence the series converges.

