
§8.05

These are to be done using one of the two comparison tests. To use these tests you
need to know examples. The two families that you know are

• The geometric series
∞∑

rn converges for |r| < 1 and diverges otherwise

• The p–series,
∞∑ 1

np converges for p > 1 and diverges otherwise.

# 1.
∞∑

n=1

1
2
√

n + 3
√

n
. Compare to

∞∑
n=1

1√
n

: lim
n→∞

1
2
√

n + 3
√

n
1√
n

= lim
n→∞

√
n

2
√

n + 3
√

n
= lim

n→∞

1

2 +
3√n√

n

=

lim
n→∞

1
2 + 1

n
1
6

=
1
2
6= 0. Hence the two series diverge or converge together and

∞∑
n=1

1√
n

is a p–series with p = 1
2 < 1 and so both series diverge.

# 3.
∞∑

n=1

sin2 n

2n . Compare to
∞∑

n=1

1
2n . This is a geometric series with r = 1

2 < 1 and

so converges. Since 0 ≤ sin2 n < 1, the first comparison test shows that
∞∑

n=1

sin2 n

2n

comverges.

# 5.
∞∑

n=1

2n

3n− 1
. Since lim

n→∞

2n

3n− 1
=

2

3
6= 0 the series diverges since the limit of the terms

is not 0.

# 7.
∞∑

n=1

( n

3n + 1

)n

. Compare to
∞∑

n=1

( 1

3

)n which is a geometric series with r = 1
3 < 1 and

hence converges. Since 0 < n
3n + 1 = 1

3 + 1
n

< 1
3 , the first comparison test shows that

∞∑
n=1

( n

3n + 1

)n

converges.

# 21.
∞∑

n=1

1− n

n2n . Note
∞∑

n=1

1− n

n2n = −
∞∑

n=1

n− 1
n2n so we can determine the behavior of

∞∑
n=1

n− 1
n2n which has non–negative terms so our theorems apply. Compare to

∞∑
n=1

1
2n

which is a geometric series with r = 1
2 < 1 and hence converges. Compute lim

n→∞

n− 1
n2n

1
2n

=

lim
n→∞

n− 1
n

= 1 6= 0 so by the limit comparison test,
∞∑

n=1

n− 1
n2n converges and hence

so does
∞∑

n=1

1− n

n2n .
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# 23.
∞∑

n=1

1
3n−1 + 1

. Compare to
∞∑

n=1

1
3n which is a geometric series with r = 1

3 < 1 and

hence converges,. Compute lim
n→∞

1
3n−1 + 1

1
3n

= lim
n→∞

3n

3n−1 + 1
= lim

n→∞

3
1 + 1

3n−1

= 3 so

by the limit comparison test
∞∑

n=1

1
3n−1 + 1

converges.

# 27.
∞∑

n=1

10n + 1
n(n + 1)(n + 2)

. Compare to
∞∑

n=1

n

n3 =
∞∑

n=1

1
n2 which is a p–series with p = 2 > 1

and hence converges. Compute lim
n→∞

10n + 1
n(n + 1)(n + 2)

1
n2

= lim
n→∞

10n3 + n2

n(n + 1)(n + 2)
= 10 6=

0. Hence
∞∑

n=1

10n + 1
n(n + 1)(n + 2)

converges by the limit comparison test.

# 29.
∞∑

n=1

arctann

n1.1 . To understand the behavior of the terms, arctann
n1.1 , we recall the be-

havior of arctanx as x → ∞: lim
x→∞

arctanx =
π

2
. Since d arctan x

dx = 1
1 + x2 > 0 it

follows that arctann < π
2 . Compare to

∞∑
n=1

π
2

n1.1 =
π

2
·
∞∑

n=1

1
n1.1 . Now

∞∑
n=1

1
n1.1 is a

p–series with p = 1.1 > 1 and hence convergent. It follows that
∞∑

n=1

π
2

n1.1 converges and

since 0 < arctann
n1.1 <

π
2

n1.1 , it follows from the first comparison test that
∞∑

n=1

arctann

n1.1

converges.

# 35.
∞∑

n=1

1
1 + 2 + 3 + · · ·+ n

. Again we need to understand the individual terms better.

A useful formula is 1 + 2 + · · · + n = n(n + 1)
2 . Hence

∞∑
n=1

1
1 + 2 + 3 + · · ·+ n

=

∞∑
n=1

2
n(n + 1)

. This can be compared to
∞∑

n=1

1
n2 which is a p–series with p = 2 > 1 and

hence converges. Compute lim
n→∞

2
n(n + 1)

1
n2

= lim
n→∞

2n2

n(n + 1)
= 2 6= 0. It follows from

the limit comparison that
∞∑

n=1

1
1 + 2 + 3 + · · ·+ n

converges.
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