These are to be done using one of the two comparison tests. To use these tests you need to know examples. The two families that you know are

- The geometric series $\sum^{\infty} r^{n}$ converges for $|r|<1$ and diverges otherwise
- The p-series, $\sum^{\infty} \frac{1}{n^{p}}$ converges for $p>1$ and diverges otherwise.
\# 1. $\sum_{n=1}^{\infty} \frac{1}{2 \sqrt{n}+\sqrt[3]{n}}$. Compare to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}: \lim _{n \rightarrow \infty} \frac{\frac{1}{2 \sqrt{n}+\sqrt[3]{n}}}{\frac{1}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{2 \sqrt{n}+\sqrt[3]{n}}=\lim _{n \rightarrow \infty} \frac{1}{2+\frac{\sqrt[3]{n}}{\sqrt{n}}}=$ $\lim _{n \rightarrow \infty} \frac{1}{2+\frac{1}{n^{\frac{1}{6}}}}=\frac{1}{2} \neq 0$. Hence the two series diverge or converge together and $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a p-series with $p=\frac{1}{2}<1$ and so both series diverge.
\# 3. $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{2^{n}}$. Compare to $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$. This is a geometric series with $r=\frac{1}{2}<1$ and so converges. Since $0 \leq \sin ^{2} n<1$, the first comparison test shows that $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{2^{n}}$ comverges.
\# 5. $\sum_{n=1}^{\infty} \frac{2 n}{3 n-1}$. Since $\lim _{n \rightarrow \infty} \frac{2 n}{3 n-1}=\frac{2}{3} \neq 0$ the series diverges since the limit of the terms is not 0 .
\# 7. $\sum_{n=1}^{\infty}\left(\frac{n}{3 n+1}\right)^{n}$. Compare to $\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}$ which is a geometric series with $r=\frac{1}{3}<1$ and hence converges. Since $0<\frac{n}{3 n+1}=\frac{1}{3+\frac{1}{n}}<\frac{1}{3}$, the first comparison test shows that $\sum_{n=1}^{\infty}\left(\frac{n}{3 n+1}\right)^{n}$ converges.
\# 21. $\sum_{n=1}^{\infty} \frac{1-n}{n 2^{n}}$. Note $\sum_{n=1}^{\infty} \frac{1-n}{n 2^{n}}=-\sum_{n=1}^{\infty} \frac{n-1}{n 2^{n}}$ so we can determine the behavior of $\sum_{n=1}^{\infty} \frac{n-1}{n 2^{n}}$ which has non-negative terms so our theorems apply. Compare to $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ which is a geometric series with $r=\frac{1}{2}<1$ and hence converges. Compute $\lim _{n \rightarrow \infty} \frac{\frac{n-1}{n 2^{n}}}{\frac{1}{2^{n}}}=$ $\lim _{n \rightarrow \infty} \frac{n-1}{n}=1 \neq 0$ so by the limit comparison test, $\sum_{n=1}^{\infty} \frac{n-1}{n 2^{n}}$ converges and hence so does $\sum_{n=1}^{\infty} \frac{1-n}{n 2^{n}}$.
\# 23. $\sum_{n=1}^{\infty} \frac{1}{3^{n-1}+1}$. Compare to $\sum_{n=1}^{\infty} \frac{1}{3^{n}}$ which is a geometric series with $r=\frac{1}{3}<1$ and hence converges,. Compute $\lim _{n \rightarrow \infty} \frac{\frac{1}{3^{n-1}+1}}{\frac{1}{3^{n}}}=\lim _{n \rightarrow \infty} \frac{3^{n}}{3^{n-1}+1}=\lim _{n \rightarrow \infty} \frac{3}{1+\frac{1}{3^{n-1}}}=3$ so by the limit comparison test $\sum_{n=1}^{\infty} \frac{1}{3^{n-1}+1}$ converges.
\# 27. $\sum_{n=1}^{\infty} \frac{10 n+1}{n(n+1)(n+2)}$. Compare to $\sum_{n=1}^{\infty} \frac{n}{n^{3}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ which is a p-series with $p=2>1$ and hence converges. Compute $\lim _{n \rightarrow \infty} \frac{\frac{10 n+1}{n(n+1)(n+2)}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{10 n^{3}+n^{2}}{n(n+1)(n+2)}=10 \neq$ 0 . Hence $\sum_{n=1}^{\infty} \frac{10 n+1}{n(n+1)(n+2)}$ converges by the limit comparison test.
\# 29. $\sum_{n=1}^{\infty} \frac{\arctan n}{n^{1.1}}$. To understand the behavior of the terms, $\frac{\arctan n}{n^{1.1}}$, we recall the behavior of $\arctan x$ as $x \rightarrow \infty: \lim _{x \rightarrow \infty} \arctan x=\frac{\pi}{2}$. Since $\frac{d \arctan x}{d x}=\frac{1}{1+x^{2}}>0$ it follows that $\arctan n<\frac{\pi}{2}$. Compare to $\sum_{n=1}^{\infty} \frac{\frac{\pi}{2}}{n^{1.1}}=\frac{\pi}{2} \cdot \sum_{n=1}^{\infty} \frac{1}{n^{1.1}}$. Now $\sum_{n=1}^{\infty} \frac{1}{n^{1.1}}$ is a p-series with $p=1.1>1$ and hence convergent. It follows that $\sum_{n=1}^{\infty} \frac{\frac{\pi}{2}}{n^{1.1}}$ converges and since $0<\frac{\arctan n}{n^{1.1}}<\frac{\frac{\pi}{2}}{n^{1.1}}$, it follows from the first comparison test that $\sum_{n=1}^{\infty} \frac{\arctan n}{n^{1.1}}$ converges.
\# 35. $\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n}$. Again we need to understand the individual terms better. A useful formula is $1+2+\cdots+n=\frac{n(n+1)}{2}$. Hence $\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n}=$ $\sum_{n=1}^{\infty} \frac{2}{n(n+1)}$. This can be compared to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ which is a p-series with $p=2>1$ and hence converges. Compute $\lim _{n \rightarrow \infty} \frac{\frac{2}{n(n+1)}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{2 n^{2}}{n(n+1)}=2 \neq 0$. It follows from the limit comparison that $\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n}$ converges.

