These are to be done using one of the two comparison tests. To use these tests you need to know examples. The two families that you know are

- The geometric series $\sum_{n=0}^{\infty} r^n$ converges for |r| < 1 and diverges otherwise
- The p-series, $\sum_{n=0}^{\infty} \frac{1}{n^p}$ converges for p > 1 and diverges otherwise.

1.
$$\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n} + \sqrt[3]{n}}$$
. Compare to $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$: $\lim_{n \to \infty} \frac{\frac{1}{2\sqrt{n} + \sqrt[3]{n}}}{\frac{1}{\sqrt{n}}} = \lim_{n \to \infty} \frac{\sqrt{n}}{2\sqrt{n} + \sqrt[3]{n}} = \lim_{n \to \infty} \frac{1}{2 + \frac{\sqrt[3]{n}}{\sqrt{n}}} = \lim_{n \to \infty} \frac{1}{2\sqrt{n} + \sqrt[3]{n}} = \lim_{n \to \infty} \frac{1}{2\sqrt{n}} = \lim_{n$

 $\lim_{n\to\infty}\frac{1}{2+\frac{1}{n^{\frac{1}{6}}}}=\frac{1}{2}\neq 0$. Hence the two series diverge or converge together and $\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}$

is a p-series with $p = \frac{1}{2} < 1$ and so both series diverge.

- # 3. $\sum_{n=1}^{\infty} \frac{\sin^2 n}{2^n}$. Compare to $\sum_{n=1}^{\infty} \frac{1}{2^n}$. This is a geometric series with $r = \frac{1}{2} < 1$ and so converges. Since $0 \le \sin^2 n < 1$, the first comparison test shows that $\sum_{n=1}^{\infty} \frac{\sin^2 n}{2^n}$
- # 5. $\sum_{n=1}^{\infty} \frac{2n}{3n-1}$. Since $\lim_{n\to\infty} \frac{2n}{3n-1} = \frac{2}{3} \neq 0$ the series diverges since the limit of the terms is not 0.
- # 7. $\sum_{n=1}^{\infty} \left(\frac{n}{3n+1}\right)^n$. Compare to $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$ which is a geometric series with $r = \frac{1}{3} < 1$ and hence converges. Since $0 < \frac{n}{3n+1} = \frac{1}{3+\frac{1}{n}} < \frac{1}{3}$, the first comparison test shows that $\sum_{n=1}^{\infty} \left(\frac{n}{3n+1}\right)^n$ converges.
- # 21. $\sum_{n=1}^{\infty} \frac{1-n}{n2^n}$. Note $\sum_{n=1}^{\infty} \frac{1-n}{n2^n} = -\sum_{n=1}^{\infty} \frac{n-1}{n2^n}$ so we can determine the behavior of $\sum_{n=1}^{\infty} \frac{n-1}{n2^n}$ which has non-negative terms so our theorems apply. Compare to $\sum_{n=1}^{\infty} \frac{1}{2^n}$ which is a geometric series with $r = \frac{1}{2} < 1$ and hence converges. Compute $\lim_{n \to \infty} \frac{\frac{n-1}{n2^n}}{\frac{1}{2^n}} = \frac{1}{2^n}$

 $\lim_{n\to\infty}\frac{n-1}{n}=1\neq 0 \text{ so by the limit comparison test, } \sum_{n=1}^{\infty}\frac{n-1}{n2^n} \text{ converges and hence}$ so does $\sum_{n=1}^{\infty}\frac{1-n}{n2^n}.$

- # 23. $\sum_{n=1}^{\infty} \frac{1}{3^{n-1}+1}$. Compare to $\sum_{n=1}^{\infty} \frac{1}{3^n}$ which is a geometric series with $r=\frac{1}{3}<1$ and hence converges,. Compute $\lim_{n\to\infty} \frac{\frac{1}{3^{n-1}+1}}{\frac{1}{3^n}} = \lim_{n\to\infty} \frac{3^n}{3^{n-1}+1} = \lim_{n\to\infty} \frac{3}{1+\frac{1}{3^{n-1}}} = 3$ so by the limit comparison test $\sum_{n=1}^{\infty} \frac{1}{3^{n-1}+1}$ converges.
- # 27. $\sum_{n=1}^{\infty} \frac{10n+1}{n(n+1)(n+2)}.$ Compare to $\sum_{n=1}^{\infty} \frac{n}{n^3} = \sum_{n=1}^{\infty} \frac{1}{n^2}$ which is a p-series with p=2>1 and hence converges. Compute $\lim_{n\to\infty} \frac{\frac{10n+1}{n(n+1)(n+2)}}{\frac{1}{n^2}} = \lim_{n\to\infty} \frac{10n^3+n^2}{n(n+1)(n+2)} = 10 \neq 0.$ Hence $\sum_{n=1}^{\infty} \frac{10n+1}{n(n+1)(n+2)}$ converges by the limit comparison test.
- # 29. $\sum_{n=1}^{\infty} \frac{\arctan n}{n^{1.1}}.$ To understand the behavior of the terms, $\frac{\arctan n}{n^{1.1}},$ we recall the behavior of $\arctan x$ as $x \to \infty$: $\lim_{x \to \infty} \arctan x = \frac{\pi}{2}.$ Since $\frac{d\arctan x}{dx} = \frac{1}{1+x^2} > 0$ it follows that $\arctan n < \frac{\pi}{2}.$ Compare to $\sum_{n=1}^{\infty} \frac{\frac{\pi}{2}}{n^{1.1}} = \frac{\pi}{2} \cdot \sum_{n=1}^{\infty} \frac{1}{n^{1.1}}.$ Now $\sum_{n=1}^{\infty} \frac{1}{n^{1.1}}$ is a p-series with p = 1.1 > 1 and hence convergent. It follows that $\sum_{n=1}^{\infty} \frac{\frac{\pi}{2}}{n^{1.1}}$ converges and since $0 < \frac{\arctan n}{n^{1.1}} < \frac{\frac{\pi}{2}}{n^{1.1}},$ it follows from the first comparison test that $\sum_{n=1}^{\infty} \frac{\arctan n}{n^{1.1}}$ converges.
- # 35. $\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n}$. Again we need to understand the individual terms better. A useful formula is $1+2+\cdots+n=\frac{n(n+1)}{2}$. Hence $\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n}=\sum_{n=1}^{\infty} \frac{2}{n(n+1)}$. This can be compared to $\sum_{n=1}^{\infty} \frac{1}{n^2}$ which is a p-series with p=2>1 and hence converges. Compute $\lim_{n\to\infty} \frac{2}{n(n+1)} = \lim_{n\to\infty} \frac{2n^2}{n(n+1)} = 2 \neq 0$. It follows from the limit comparison that $\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n}$ converges.