\# 1. $\sum_{n=1}^{\infty} \frac{n^{\sqrt{2}}}{2^{n}}$. To do the ratio test we need to compute $\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{\sqrt{2}}}{2^{n+1}}}{\frac{n^{\sqrt{2}}}{2^{n}}}=\lim _{n \rightarrow \infty} \frac{1}{2}\left(\frac{n+1}{n}\right)^{\sqrt{2}}=$ $\frac{1}{2}\left(\lim _{n \rightarrow \infty} \frac{n+1}{n}\right)^{\sqrt{2}}=\frac{1}{2}<1$ so by the ratio test, this series converges. The root test can also be made to work: $\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{\sqrt{2}}}{2^{n}}}=\frac{\left(\lim _{n \rightarrow \infty} \sqrt[n]{n}\right)^{\sqrt{2}}}{2}=\frac{1}{2}$.
\# 3. $\sum_{n=1}^{\infty} n!e^{-n}$. The ratio test works well here. Compute $\lim _{n \rightarrow \infty} \frac{(n+1)!e^{-(n+1)}}{n!e^{-n}}=\lim _{n \rightarrow \infty} \frac{n+1}{e}=$ $\infty>1$ so the ratio test shows that this series diverges. The root test is harder to get to work. The difficulty can be reduced to the computation $\lim _{n \rightarrow \infty} \sqrt[n]{n!}=\infty$ but this is difficult to show directly.
\# 5. $\sum_{n=1}^{\infty} \frac{n^{10}}{10^{n}}$. The ratio test requires the computation $\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{10}}{10^{n+1}}}{\frac{n^{10}}{10^{n}}}=\frac{1}{10}\left(\lim _{n \rightarrow \infty} \frac{n+1}{n}\right)^{10}=$ $\frac{1}{10}<1$ so the ratio test shows that the series converges. The root test works a follows: $\lim _{n \rightarrow \infty} \sqrt[n]{\frac{n^{10}}{10^{n}}}=\frac{\left(\lim _{n \rightarrow \infty} \sqrt[n]{n}\right)^{10}}{10}=\frac{1}{10}$.
\# 11. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$. The ratio test requires the calculation $\lim _{n \rightarrow \infty} \frac{\frac{\ln (n+1)}{(n+1)^{3}}}{\frac{\ln n}{n^{3}}}=\lim _{n \rightarrow \infty} \frac{n^{3} \ln (n+1)}{(n+1)^{3} \ln n}=$ $\left(\lim _{n \rightarrow \infty} \frac{n}{n+1}\right)^{3} \lim _{n \rightarrow \infty} \frac{\ln (n+1)}{\ln n}=1$ since one can use L'Hôpital's Rule to show ${ }_{x \rightarrow \infty} \frac{\ln (x+1)}{\ln x}=$ 1. The root test also gives 1 : the hard part is to show $\lim _{n \rightarrow \infty} \sqrt[n]{\ln n}=1$. In any case, both tests are inconclusive. We solve the problem by appealing to one of the earlier comparison tests: we compare our series to $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$. This is a p-series with $p=2>1$ so this second series converges. Compute $\lim _{n \rightarrow \infty} \frac{\frac{\ln n}{n^{3}}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{\ln n}{n}=0$ so $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$ converges since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ does.
\# 19. $\sum_{n=1}^{\infty} \frac{(n+3)!}{3!n!3^{n}}$. The calculation for the ratio test is $\lim _{n \rightarrow \infty} \frac{\frac{(n+4)!}{3!(n+1)!3^{n+1}}}{\frac{(n+3)!}{3!n!3^{n}}}=\lim _{n \rightarrow \infty} \frac{n+4}{3(n+1)}=$
$\frac{1}{3}<1$. Hence the series converges.
\# 25. $\sum_{n=1}^{\infty} \frac{n!\ln n}{n(n+2)!}$. Use the ratio test again: $\lim _{n \rightarrow \infty} \frac{\frac{(n+1)!\ln (n+1)}{(n+1)(n+3)!}}{\frac{n!\ln n}{n(n+2)!}}=\lim _{n \rightarrow \infty} \frac{n \ln (n+1)}{(n+3) \ln n}=$ $\lim _{n \rightarrow \infty} \frac{n}{n+3} \lim _{n \rightarrow \infty} \frac{\ln (n+1)}{\ln n}=1$ so the ratio test is inconclusive. To continue, rewrite the series as follows $\sum_{n=1}^{\infty} \frac{n!\ln n}{n(n+2)!}=\sum_{n=1}^{\infty} \frac{\ln n}{n(n+1)(n+2)}$. Compare this to the series $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$ from $\# 11$. This series converges by \#11. Compute the limit $\lim _{n \rightarrow \infty} \frac{\frac{\ln n}{n(n+1)(n+2)}}{\frac{\ln n}{n^{3}}}=$ $\lim _{n \rightarrow \infty} \frac{n(n+1)(n+2)}{n^{3}}=1 \neq 0$. Hence $\sum_{n=1}^{\infty} \frac{n!\ln n}{n(n+2)!}$ converges.
\# 27. $a_{1}=2, a_{n+1}=\frac{1+\sin n}{n} a_{n}$. This recursive definition is ideal for the ratio test since $\frac{a_{n+1}}{a_{n}}=\frac{1+\sin n}{n}$, so $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{1+\sin n}{n}$. Since $0<\frac{1+\sin n}{n}<\frac{2}{n}$, the Sandwich Theorem shows $\lim _{n \rightarrow \infty} \frac{1+\sin n}{n}=0<1$. Hence the series converges by the ratio test.
\# 31. $a_{1}=2, a_{n+1}=\frac{2}{n} a_{n}$. The same idea works well here. $\frac{a_{n+1}}{a_{n}}=\frac{2}{n}$ so $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=$ $\lim _{n \rightarrow \infty} \frac{2}{n}=0<1$, so again the series converges.

