
§8.07

# 3.
∞∑

n=1

(−1)n+1
( n

10

)n

. To use any of our tests, it is important to understand how the

terms of the series approach 0. As a first step, consider lim
n→∞

( n

10

)n

= ∞. This means
that the terms are not approaching 0 at all and so the series diverges.

# 5.
∞∑

n=2

(−1)n+1 1
lnn

. This time the terms do go to 0. Since ln x is an increasing function,

1
lnn

is decreasing, so by the Alternating Series Test this series converges. The series
∞∑

n=2

1
lnn

diverges since lnn < n, so 1
n < 1

lnn
and

∞∑
n=1

1
n

diverges since it is a p–series

with p = 1. Hence this is a conditionally convergent series.

# 9.
∞∑

n=1

(−1)n+1

√
n + 1

n + 1
. Check lim

n→∞

√
n + 1

n + 1
1√
n

= lim
n→∞

n +
√

n

n + 1
= lim

n→∞

1 + 1√
n

1 + 1
n

= 1. Since

∞∑
n=1

1√
n

is a p–series with p = 1
2 < 1, it diverges and hence so does

∞∑
n=1

√
n + 1

n + 1
.

Check that lim
n→∞

√
n + 1

n + 1
= lim

n→∞

1 + 1√
n√

n + 1√
n

= 0. To apply the Alternating Series Test,

it remains to check that
√

n + 1
n + 1 is decreasing. To show this, study the function f(x) =

√
x + 1

x + 1 . Compute f ′(x) =
d
√

x+1
dx (x + 1)− (

√
x + 1)dx+1

dx

(x + 1)2
=

1
2
√

x
(x + 1)− (

√
x + 1)

(x + 1)2
=

1
2
√

x
−
√

x
2 − 1

(x + 1)2
. For x ≥ 1,

√
x ≥ 1 so 1

2
√

x
≤ 1

2 so 1
2
√

x
−
√

x
2 − 1 < 0 and hence

f ′(x) < 0 for all x ≥ 1. Hence the terms
√

n + 1
n + 1 are decreasing and the Alternating

Series Test applies to show that
∞∑

n=1

(−1)n+1

√
n + 1

n + 1
converges. Since we have already

shown
∞∑

n=1

√
n + 1

n + 1
diverges,

∞∑
n=1

(−1)n+1

√
n + 1

n + 1
is a conditionally convergent series.

# 13.
∞∑

n=1

(−1)n+1 1√
n

. To use the Alternating Series Test first check that lim
n→∞

1√
n

= 0 and

that the terms 1√
n

are decreasing (since
√

x is an increasing function). These two

calculations show that
∞∑

n=1

(−1)n+1 1√
n

converges. Since
∞∑

n=1

1√
n

is a p–series with

1



p = 1
2 < 1, this series diverges, so

∞∑
n=1

(−1)n+1 1√
n

is a conditionally convergent series.

# 15.
∞∑

n=1

(−1)n+1 n

n3 + 1
. Compare n

n3 + 1
to 1

n2 : lim
n→∞

n
n3 + 1

1
n2

= lim
n→∞

n3

n3 + 1
= 1. Hence

∞∑
n=1

(−1)n+1 n

n3 + 1
absolutely converges because

∞∑
n=1

1
n2 is a p–series with p = 2 > 1

and so converges.

# 17.
∞∑

n=1

(−1)n 1
n + 3

. Since
∞∑

n=1

1
n + 3

=
∞∑

n=4

1
n

which is a p–series with p = 1 and so di-

verges. Since lim
n→∞

1
n + 3

= 0 and since n+3 is increasing (so 1
n + 3 is decreasing), the

Alternating Series Test shows
∞∑

n=1

(−1)n 1
n + 3

converges. Therefore
∞∑

n=1

(−1)n 1
n + 3

conditionally converges.

# 19.
∞∑

n=1

(−1)n+1 3 + n

5 + n
This time lim

n→∞

3 + n

5 + n
=

3
5
6= 0 so the terms of this series do not go

to 0 so the series diverges.

# 31.
∞∑

n=1

(−1)n−1

n2 + 2n + 1
. Compute lim

n→∞

1
n2 + 2n + 1

1
n2

= lim
n→∞

n2

n2 + 2n + 1
= 1. Since

∞∑
n=1

1
n2

is a p–series with p = 2 > 1, it converges and hence
∞∑

n=1

(−1)n−1

n2 + 2n + 1
converges abso-

lutely. One can also proceed as follows. Since n2+2n+1 = (n+1)2
∞∑

n=1

(−1)n−1

n2 + 2n + 1
=

∞∑
n=1

(−1)n−1

(n + 1)2
=

∞∑
n=2

(−1)n

n2 . Since
∞∑

n=1

1
n2 is a p–series with p = 2 > 1, it converges, so

∞∑
n=1

(−1)n−1

n2 + 2n + 1
converges absolutely.

# 35.
∞∑

n=1

(−1)n(n + 1)n

(2n)n . Compute lim
n→∞

(n + 1)n

(2n)n

1
2n

= lim
n→∞

(n + 1
n

)n

= lim
n→∞

(
1 +

1

n

)n

= e

as we saw back in the L’Hôpital’s Rule section. The series
∞∑

n=0

1
2n is a geometric series

with r = 1
2 and so converges. Hence

∞∑
n=1

(−1)n(n + 1)n

(2n)n converges absolutely.

# 45. Estimate the difference between ln 2 and the first four terms of the series ln 2 =

2



∞∑
n=1

(−1)n+1 1
n

.

The book checks that the Alternating Series Test applies so
∞∑

n=1

(−1)n+1 1
n
−

4∑
n=1

(−1)n+1 1
n

=

∞∑
n=5

(−1)n+1 1
n

. The Alternating Series Test says 0 <
∞∑

n=5

(−1)n+1 1
n

<
1
5

so

7

12
= 1− 1

2
+

1

3
− 1

4
<

∞∑
n=1

(−1)n+1 1
n

< 1− 1

2
+

1

3
− 1

4
+

1

5
=

47

60

3


