\# 3. $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{n}{10}\right)^{n}$. To use any of our tests, it is important to understand how the terms of the series approach 0 . As a first step, consider $\lim _{n \rightarrow \infty}\left(\frac{n}{10}\right)^{n}=\infty$. This means that the terms are not approaching 0 at all and so the series diverges.
\# 5. $\sum_{n=2}^{\infty}(-1)^{n+1} \frac{1}{\ln n}$. This time the terms do go to 0 . Since $\ln x$ is an increasing function, $\frac{1}{\ln n}$ is decreasing, so by the Alternating Series Test this series converges. The series $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ diverges since $\ln n<n$, so $\frac{1}{n}<\frac{1}{\ln n}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges since it is a p-series with $p=1$. Hence this is a conditionally convergent series.
\# 9. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sqrt{n}+1}{n+1}$. Check $\lim _{n \rightarrow \infty} \frac{\frac{\sqrt{n}+1}{n+1}}{\frac{1}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{n+\sqrt{n}}{n+1}=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{\sqrt{n}}}{1+\frac{1}{n}}=1$. Since $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a p-series with $p=\frac{1}{2}<1$, it diverges and hence so does $\sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{n+1}$. Check that $\lim _{n \rightarrow \infty} \frac{\sqrt{n}+1}{n+1}=\lim _{n \rightarrow \infty} \frac{1+\frac{1}{\sqrt{n}}}{\sqrt{n}+\frac{1}{\sqrt{n}}}=0$. To apply the Alternating Series Test, it remains to check that $\frac{\sqrt{n}+1}{n+1}$ is decreasing. To show this, study the function $f(x)=$ $\frac{\sqrt{x}+1}{x+1}$. Compute $f^{\prime}(x)=\frac{\frac{d \sqrt{x}+1}{d x}(x+1)-(\sqrt{x}+1) \frac{d x+1}{d x}}{(x+1)^{2}}=\frac{\frac{1}{2 \sqrt{x}}(x+1)-(\sqrt{x}+1)}{(x+1)^{2}}=$ $\frac{\frac{1}{2 \sqrt{x}}-\frac{\sqrt{x}}{2}-1}{(x+1)^{2}}$. For $x \geq 1, \sqrt{x} \geq 1$ so $\frac{1}{2 \sqrt{x}} \leq \frac{1}{2}$ so $\frac{1}{2 \sqrt{x}}-\frac{\sqrt{x}}{2}-1<0$ and hence $f^{\prime}(x)<0$ for all $x \geq 1$. Hence the terms $\frac{\sqrt{n}+1}{n+1}$ are decreasing and the Alternating Series Test applies to show that $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sqrt{n}+1}{n+1}$ converges. Since we have already shown $\sum_{n=1}^{\infty} \frac{\sqrt{n}+1}{n+1}$ diverges, $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sqrt{n}+1}{n+1}$ is a conditionally convergent series. \# 13. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}}$. To use the Alternating Series Test first check that $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$ and that the terms $\frac{1}{\sqrt{n}}$ are decreasing (since \sqrt{x} is an increasing function). These two calculations show that $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}}$ converges. Since $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ is a p-series with
$p=\frac{1}{2}<1$, this series diverges, so $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{\sqrt{n}}$ is a conditionally convergent series. \# 15. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{3}+1}$. Compare $\frac{n}{n^{3}+1}$ to $\frac{1}{n^{2}}: \lim _{n \rightarrow \infty} \frac{\frac{n}{n^{3}+1}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{3}}{n^{3}+1}=1$. Hence $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n}{n^{3}+1}$ absolutely converges because $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a p-series with $p=2>1$ and so converges.
\# 17. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n+3}$. Since $\sum_{n=1}^{\infty} \frac{1}{n+3}=\sum_{n=4}^{\infty} \frac{1}{n}$ which is a p-series with $p=1$ and so diverges. Since $\lim _{n \rightarrow \infty} \frac{1}{n+3}=0$ and since $n+3$ is increasing (so $\frac{1}{n+3}$ is decreasing), the Alternating Series Test shows $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n+3}$ converges. Therefore $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n+3}$ conditionally converges.
\# 19. $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{3+n}{5+n}$ This time $\lim _{n \rightarrow \infty} \frac{3+n}{5+n}=\frac{3}{5} \neq 0$ so the terms of this series do not go to 0 so the series diverges.
\# 31. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}+2 n+1}$. Compute $\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}+2 n+1}}{\frac{1}{n^{2}}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+2 n+1}=1$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a p-series with $p=2>1$, it converges and hence $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}+2 n+1}$ converges absolutely. One can also proceed as follows. Since $n^{2}+2 n+1=(n+1)^{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}+2 n+1}=$ $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n+1)^{2}}=\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}}$. Since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is a p-series with $p=2>1$, it converges, so $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^{2}+2 n+1}$ converges absolutely.
\#35. $\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)^{n}}{(2 n)^{n}}$. Compute $\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{n}}{(2 n)^{n}}}{\frac{1}{2^{n}}}=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{n}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$ as we saw back in the L'Hôpital's Rule section. The series $\sum_{n=0}^{\infty} \frac{1}{2^{n}}$ is a geometric series with $r=\frac{1}{2}$ and so converges. Hence $\sum_{n=1}^{\infty} \frac{(-1)^{n}(n+1)^{n}}{(2 n)^{n}}$ converges absolutely. \# 45. Estimate the difference between $\ln 2$ and the first four terms of the series $\ln 2=$

$$
\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}
$$

The book checks that the Alternating Series Test applies so $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}-\sum_{n=1}^{4}(-1)^{n+1} \frac{1}{n}=$ $\sum_{n=5}^{\infty}(-1)^{n+1} \frac{1}{n}$. The Alternating Series Test says $0<\sum_{n=5}^{\infty}(-1)^{n+1} \frac{1}{n}<\frac{1}{5}$ so

$$
\frac{7}{12}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}<\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{n}<1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}=\frac{47}{60}
$$

