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# 3. Z(—l)”*’1 (E) . To use any of our tests, it is important to understand how the
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terms of the series approach 0. As a first step, consider lim ( E> = 00. This means
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that the terms are not approaching 0 at all and so the series diverges.
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E (—1)”+11—. This time the terms do go to 0. Since Inz is an increasing function,
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% is decreasing, so by the Alternating Series Test this series converges. The series
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Z on diverges since Inn < n, so l < ﬁ and Z — diverges since it is a p—series
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with p = 1. Hence this is a conditionally convergent series.
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it remains to check that TS decreasmg. To show this, stu;iy the function f(z) =
S (p+1) — (Va+ 1)l (e + D) — (Vo4 1)

1, it diverges and hence so does Z T

= 0. To apply the Alternating Series Test,
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f'(x) <0 for all x > 1. Hence the terms \{l_——:_ll are decreasing and the Alternating
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Series Test applies to show that Z(—l)”“— converges. Since we have already
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shown Z dlverges Z ”+1 \/_ is a conditionally convergent series.
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that the terms ﬁ are decreasing (since y/x is an increasing function). These two
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converges. Since E T is a p—series with
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p= % < 1, this series diverges, so Z( —1)”+:l —— is a conditionally convergent series.
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Z( 1) Y absolutely converges because Z 5 is a p-series with p =2 > 1
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and so converges.
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# 17. g (—=1)" . Since g T3 = g — which is a p-series with p = 1 and so di-
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verges. Since lim = 0 and since n+3 is increasing (so ﬁg is decreasing), the
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conditionally converges.
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to 0 so the series diverges.
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is a p—series with p =2 > 1, it converges and hence Z L converges abso-
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as we saw back in the L’Hopital’s Rule section. The series — is a geometric series
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with r = % and so converges. Hence E Gny" converges absolutely.
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# 45. Estimate the difference between In2 and the first four terms of the series In2 =
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The book checks that the Alternating Series Test appliesso Y (—1)"*! ——Z (- ti= =
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Z( 1)”Jrl The Alternating Series Test says 0 < Z - <~ 5o
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