
§8.08

# 3.
∞∑

n=0

(−1)n(4x + 1)n is not in the usual form, we need (x − b)n, so we factor out a

4n:
∞∑

n=0

(−1)n(4x + 1)n =
∞∑

n=0

(−1)n4n(x +
1

4
)n =

∞∑
n=0

(−4)n
(
x− (− 1

4
)
)n. To calculate

the radius of convergence, use either the radius or the root test. For the ratio test,

compute lim
n→∞

|(−4)n+1|Rn+1

|(−4)n|Rn = 4R and 4R = 1 or R = 1
4 . For the root test, compute

lim
n→∞

n
√
|(−4)n|Rn = 4R so again R = 1

4 . At the two endpoints, we need to evaluate

the the convergence properties of
∞∑

n=0

(−4)n(
1

4
)n and

∞∑
n=0

(−4)n(− 1

4
)n.

•
∞∑

n=0

(−4)n(
1

4
)n =

∞∑
n=0

(−1)n diverges since lim
n→∞

(−1)n does not exists and henceis

not 0

•
∞∑

n=0

(−4)n(− 1

4
)n =

∞∑
n=0

1 diverges since lim
n→∞

1 6= 0

Putting this all together, the series converges absolutely for x in the interval (− 1
2 , 0)

and diverges for all x not in this open interval.

# 7.
∞∑

n=0

n xn

n + 2
To compute the radius of convergence, use the ratio test: lim

n→∞

n+1
n+3Rn+1

n
n+2Rn =

lim
n→∞

(n + 1)(n + 2)Rn+1

n(n + 3)Rn = lim
n→∞

(n + 1)(n + 2)
n(n + 3)

R = lim
n→∞

(1 + 1
n )(1 + 2

n )
1 + 3

n

R = R so

the radius of convergence is 1. At the end points, we must study the series
∞∑

n=0

n

n + 2

and
∞∑

n=0

n (−1)n

n + 2
. Since lim

n→∞

n

n + 2
= 1 both series diverge since the limit of the terms

of either sequence do not go to 0. Hence the series converges absolutely for all x in
the interval (−1, 1) and it diverges for all other x.

# 13.
∞∑

n=0

x2n+1

n!
. Use the ratio test and compute lim

n→∞

1
(n+1)!R

n+1

1
n!R

n
= lim

n→∞

R

n
= 0 for

any R so the radius of convergence is infinity. Hence the series converges absolutely
everywhere.

# 19.
∞∑

n=0

√
n xn

3n Use the ratio test and compute lim
n→∞

√
n+1

3n+1 Rn+1

√
n

3n Rn
= lim

n→∞

√
n + 1√

n

R

3
=

lim
n→∞

√
n+1

n

R

3
=

R

3
so the radius of convergence is 3. At the two end points we need
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to study the two series
∞∑

n=0

√
n 3n

3n =
∞∑

n=0

√
n and

∞∑
n=0

√
n (−3)n

3n =
∞∑

n=0

√
n(−1)n. Since

lim
n→∞

√
n = ∞, both the above series diverge since the limit of the terms in the series

do not go to 0. Hence the series converges absolutely for x in (−3, 3) and diverges for
all other x.

# 29.
∞∑

n=1

(4x− 5)2n+1

n3/2
. As in #3, we first need to rewrite the series in standard form:

∞∑
n=1

(4x− 5)2n+1

n3/2
=

∞∑
n=1

42n+1

n3/2

(
x − 5

4

)2n+1

. Compute the radius of convergence us-

ing the root test (the ratio test can also be made to work). lim
n→∞

n

√
42n+1

n3/2
R2n+1 =

lim
n→∞

42+ 1
n(

n
1
n

)3/2
R2+ 1

n . Since lim
n→∞

n
1
n = 1, lim

n→∞
n

√
42n+1

n3/2
R2n+1 = 42R2 so R2 = 1

42 so

R = 1
4 . Understanding the endpoints involves understanding the series

∞∑
n=1

42n+1

n3/2

(
1

4

)2n+1

=

∞∑
n=1

1
n3/2

and
∞∑

n=1

42n+1

n3/2

(
− 1

4

)2n+1

=
∞∑

n=1

−1
n3/2

. Since one of the series is the negative

of the other, either both converge absolutely or both diverge. Since
∞∑

n=1

1
n3/2

is a p–

series with p = 3
2 and since 3

2 > 1, this p–series converges. Hence the series converges
absolutely for all x in the interval [1, 3

2 ].

# 33.
∞∑

n=0

(x− 1)2n

4n . To compute the radius of convergence, use the root test lim
n→∞

n

√
R2n

4n =

R2

4
so the radius of convergence is 2. The two endpoint series are

∞∑
n=0

(2)2n

4n =
∞∑

n=0

1

and
∞∑

n=0

(−2)2n

4n =
∞∑

n=0

1 so both series diverge as the terms do not go to 0. To actually

sum the series note that it is a geometric series
∞∑

n=0

(x− 1)2n

4n =
∞∑

n=0

( (x− 1)2

4

)n

=

1

1− (x−1)2

4

=
4

4− (x2 − 2x + 1)
=

4
3 + 2x− x2

# 41. sinx = x− x3

3! + x5

5! −
x7

7! + x9

9! −
x11

11! + · · ·
a) Since d sin x

dx = cos x and we can differentiate the series term by term, so cos x = 1 −
3x2

3! + 5x4

5! − 7x6

7! + 9x8

9! − 11x10

11! + · · · or cos x = 1− x2

2! + x4

4! −
x6

6! + x8

8! −
x10

10! + · · ·

b) sin(2x) = 2x− (2x)3
3! + (2x)5

5! − (2x)7
7! + (2x)9

9! − (2x)11
11! + · · · or sin(2x) = 2x− 8x3

3! +

2



32x5

5! − 128x7

7! + 512x9

9! − 2048x11

11! + · · ·
c) Since sin(2x) = 2 cos x sinx we can use the product theorem to compute

cos x sinx = (1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
− x10

10!
+ · · ·) · (x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− x11

11!
+ · · ·)

= x− x3

2!
+

x5

4!
− x7

6!
+

x9

8!
− x11

10!
+ · · ·

− x3

3!
+

x5

3! · 2!
− x7

3! · 4!
+

x9

3! · 6!
− x11

3! · 8!
+ · · ·

x5

5!
− x7

5! · 2!
+

x9

5! · 4!
− x11

5! · 6!
+ · · ·

− x7

7!
+

x9

7! · 2!
− x11

7! · 4!
+ · · ·

x9

9!
− x11

9! · 2!
+ · · ·

− x11

11!
− · · ·

...

= x−

((
3
1

)
+
(

3
3

))
x3

3!
+

((
5
1

)
+
(

5
3

)
+
(

5
5

))
x5

5!
−

((
7
1

)
+
(

7
3

)
+
(

7
5

)
+
(

7
7

))
x7

7!((
9
1

)
+
(

9
3

)
+
(

9
5

)
+
(

9
7

)
+
(

9
9

))
x9

9!

−

((
11
1

)
+
(

11
3

)
+
(

11
5

)
+
(

11
7

)
+
(

11
9

)
+
(

11
11

))
x11

11!
+ · · ·

= x− 4x3

3!
+

16x5

5!
− 64x7

7!
+

256x9

9!
− 1024x11

11!
+ · · ·

One can now easily verify that as far as we have calculated, the series for sin(2x) and
that for 2 cos x sinx agree.
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