
§8.10

# 5. cos
√

x. Since cos x =
∞∑

n=0

(−1)nx2n

(2n)!
, cos

√
x =

∞∑
n=0

(−1)n(
√

x)2n

(2n)!
=

∞∑
n=0

(−1)nxn

(2n)!
.

This is actually an example of a mistake in the book. The power series representation
is correct, but it is not a Maclaurin series because the function cos

√
x does not have

a Maclaurin series since it does not even exist on an open interval containing 0.

# 7. xex. Since ex =
∞∑

n=0

xn

n!
, xex =

∞∑
n=0

xn+1

n!
. This is a power series which represents the

function everywhere, hence in an open interval containing 0 and it must therefore be
the Maclaurin series.

# 19. The polynomial x − x3

6 is sum of the first two terms in the Macluarin series for

sinx =
∞∑

n=0

(−1)nx2n+1

(2n + 1)!
. The error formula says that for any fixed x, there exists at

least one number z between 0 and x so that sinx−
(
x− x3

6

)
= −(cos z)x4

4! . However

instead of thinking of x − x3

6 as the degree 3 Macluarin polynomial, think of it as

x − x3

6 + 0 · x4 which is the degree 4 Macluarin polynomial. Now the error formula
says that for any fixed x, there exists at least one number z between 0 and x so that

sinx −
(
x − x3

6

)
= (sin z)x5

5! . Hence
∣∣∣ sinx − x − x3

6

∣∣∣ ≤ |x|5
5! since whatever z is,

| sin z| ≤ 1.

The problem is asking for the set of x for which we are sure that
∣∣∣ sinx− x− x3

6

∣∣∣ <

5 ·10−4. We will be sure of this as long as |x|
5

5! = |x|5
120 < 5 ·10−4, or |x|5 < 600 ·10−4 =

6 · 10−2, or |x| < 5
√

.06. The fifth root of .06 is a bit bigger than 0.569679 so for

|x| ≤ 0.569679, it follows that
∣∣∣ sinx − x − x3

6

∣∣∣ < 5 · 10−4. The book’s solution

|x| < 5
√

.06 is fine and it is indeed true that 5
√

.06 < 0.56968. However, for any x with
5
√

.06 < |x| < 0.56968 you are NOT sure that
∣∣∣ sinx− x− x3

6

∣∣∣ < 5 · 10−4.

# 23. The Remainder Estimation Theorem says that |ex −
(
1 + x + x2

2

)
| = ezx3

3! for some z

between 0 and x. The problem restricts x to |x| < 0.1 so z must also satisfy |z| < 0.1
and since ex is an increasing function 0 < ez < e0.1. Since x3 is an increasing function

as well, ezx3

3! <
e0.1(0.1)3

3! = e0.1

6000 . The usual next step here is to notice that e < 3 so
e0.1 < 30.1 and haul out your calculator. Just for fun, we can also proceed as follows.
We need an upper estimate for e0.1 which we can get if we have a lower estimate for

e−0.1 =
∞∑

n=0

(−1)n

10nn!
. This is an alternating series to which the Alternating Series Test

applies (you check the necessary conditions). Hence e−0.1 > 1− 1
10 = 0.9 so e0.1 < 10

9

and hence |ex −
(
1 + x + x2

2

)
| < 10

9 · 6000 = 1
5400 < 1.851852 · 10−5, a bit better than
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the answer in the back of the book.

# 24. The Alternating Series Test says that for −0.1 < x < 0 we can replace the series by
the polynomial with error bounded by the next term. As we remarked above, the
hypotheses for the Alternating Series Test do hold in this problem. Hence |ex −

(
1 +

x + x2

2

)
| <

|x|3
6 <

(0.1)3
6 = 1

6000 which is a bit better than the answer in #23. All
this means is that our control of the error for x between −0.1 and 0 is better than our
control of the error for x between 0 and 0.1.

# 31. sin(0.1) since sin x =
∞∑

n=0

(−1)nx2n+1

(2n + 1)!
.

# 35. Multiply ex =
∞∑

n=0

xn

n!
and sinx =

∞∑
n=0

(−1)nx2n+1

(2n + 1)!
and work out the first five nonzero

terms. This is an exercise in polynomial multiplication and keeping track of what you
are doing because you only need five nonzero terms. The first five nonzero terms for
ex are just the first five terms, 1 + x + x2

2 + x3

6 + x4

24 . The next term has degree 6.

The sin x series starts off x− x3

6 + x5

120 and the next term has degree 7. We multiply

the ex approximation by x, −x3

6 and x5

120 and just keep the terms of degree 5 or less.

ex sinx = x + x2 + x3

2 + x4

6 + x5

24 + · · ·

− x3

6 − x4

6 − x5

6 · 2 + · · ·

+ x5

120 + · · ·
...

so ex sinx = x + x2 + x3

3 + 0− x5

30 .
We have had bad luck and have only gotten four nonzero terms so we try again with

1 + x + x2

2 + x3

6 + x4

24 + x5

120
We multiply the ex approximation by x, −x3

6 and x5

120 and just keep the terms of
degree 6 or less.

ex sinx = x + x2 + x3

2 + x4

6 + x5

24 + x6

120 + · · ·

− x3

6 − x4

6 − x5

6 · 2 − x6

6 · 6 + · · ·

+ x5

120 + x6

120 + · · ·
...

so ex sinx = x + x2 + x3

3 − x5

30 − x6

90 + · · ·.
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# 41. If f has a continuous 2nd derivative in an interval around a, then for a fixed x,

f(x) = f(a) + f ′(a)(x − a) + f ′′(c2)
2 (x − a)2 for some c2 between x and a. If a is a

critical point for f , f ′(a) = 0, so f(x) = f(a) + f ′′(c2)
2 (x− a)2.

a) If there is some interval around a so that f ′′ ≤ 0 in this interval, then f(x)−f(a) ≤
0 for all x in this interval since c2 is in the interval. Hence a is a local maximum
for f .

b) If there is some interval around a so that f ′′ ≥ 0 in this interval, then f(x)−f(a) ≥
0 for all x in this interval since c2 is in the interval. Hence a is a local minimum
for f .

Notice that if f ′′(a) < 0, then by continuity, f ′′(x) < 0 for all x in some interval
around a; if f ′′(a) > 0, then by continuity, f ′′(x) > 0 for all x in some interval around
a. This is the usual version of the Second Derivative Test for local max/min.
Also note that if f ′′(a) = 0 (when the usual Second Derivative Test does not apply)

we could expand further using Taylor’s Theorem and develop tests. Loosely speaking, if
f has lots of derivatives in a neighborhood of a, and if f ′(a) = · · · = f (k−1)(a) = 0 and
f (k)(a) 6= 0, then, if k is odd, the point a is neither a local max. nor a local min. If k is
even and f (k)(a) > 0, then a is a local min.: if k is even and f (k)(a) < 0, then a is a local
max.
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