$\S 8.11$

\# 1. Write the first four terms of the binomial series for $(1+x)^{\frac{1}{2}}=\sum_{n=0}^{\infty}\binom{\frac{1}{2}}{n} x^{n}$. The first four terms are $1+\frac{1}{2} x+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)}{2!} x^{2}+\frac{\frac{1}{2}\left(\frac{1}{2}-1\right)\left(\frac{1}{2}-2\right)}{3!} x^{3}$, or $1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}$.
\# 5. Write the first four terms of the binomial series for $\left(1+\frac{x}{2}\right)^{-2}=\sum_{n=0}^{\infty}\binom{-2}{n}\binom{x}{2}^{n}$. The first four terms are $1-2 \frac{x}{2}+\frac{-2(-2-1)}{2!}\left(\frac{x}{2}\right)^{2}+\frac{-2(-2-1)(-2-2)}{3!}\left(\frac{x}{2}\right)^{3}$, or $1-x+\frac{3}{4} x^{2}-\frac{1}{2} x^{3}$.
\# 21. Solve $y^{\prime}-x y=0$ with $y(0)=1$. We are looking for a power series solution, $y=$ $\sum_{n=0}^{\infty} a_{n} x^{n}$. Then $y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}$ and $x y=\sum_{n=0}^{\infty} a_{n} x^{n+1}$ so $y^{\prime}-x y=a_{1}+\sum_{n=1}^{\infty}\left((n+1) a_{n+1}-a_{n-1}\right) x^{n}$. The only way a power series can vanish is if all its coefficients vanish, so $a_{1}=0$ and the recursion relation $(n+1) a_{n+1}-a_{n-1}=0$ holds. The initial value condition $y(0)=1$ shows $a_{0}=1$. The recursion relation can be rewritten $(k+2) a_{k+2}=a_{k}$, or $a_{k+2}=\frac{a_{k}}{k+2}$. Since $a_{1}=0, a_{2 k+1}=0$ for all integers $k \geq 0$. Since $a_{0}=1, a_{2 k}=\frac{1}{2^{k} k!}$ for all integers $k \geq 0$. Hence $y=\sum_{n=0}^{\infty} \frac{x^{2 n}}{2^{n} n!}$ is the solution. One can see easily that $e^{\frac{x^{2}}{2}}=\sum_{n=0}^{\infty} \frac{x^{2 n}}{2^{n} n!}$ as well. $y=e^{\frac{x^{2}}{2}}$ is the answer you will get if you apply your technique for solving first order linear equations to this problem.
\# 23. Solve $(1-x) y^{\prime}-y=0$ with $y(0)=2$. Same yoga as the last problem. We are looking for a power series solution, $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. Then $y^{\prime}=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}$. Then $(1-x) y^{\prime}=y^{\prime}-x y^{\prime}=\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n}-\sum_{n=0}^{\infty}(n+1) a_{n+1} x^{n+1}=a_{1}+\sum_{n=1}^{\infty}((n+$ 1) $\left.a_{n+1}-n a_{n}\right) x^{n}$ and $(1-x) y^{\prime}-y=a_{1}-a_{0}+\sum_{n=1}^{\infty}\left((n+1) a_{n+1}-n a_{n}-a_{n}\right) x^{n}=$ $a_{1}-a_{0}+\sum_{n=1}^{\infty}(n+1)\left(a_{n+1}-a_{n}\right) x^{n}$. In order for this power series to vanish, $a_{1}-a_{0}=0$ and $a_{n+1}-a_{n}=0$ for all $n \geq 1$. Hence $a_{0}=a_{1}=a_{2}=\cdots=a_{n}=\cdots$. From the initial value condition $y(0)=2$ we see $a_{0}=2$, so $y=\sum_{n=0}^{\infty} 2 x^{n}$ is our solution. Note that this series is a geometric series so $y=\frac{2}{1-x}$ is another expression for the solution.
\# 43. Find a polynomial that will approximate the function $F(x)=\int_{0}^{x} \sin t^{2} d t$ on the interval $[0,1]$ with an error of magnitude less than 10^{-3}. First write down an exact power series solution: $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}$ so $\sin t^{2}=\sum_{n=0}^{\infty} \frac{(-1)^{n}\left(t^{2}\right)^{2 n+1}}{(2 n+1)!}=$ $\sum_{n=0}^{\infty} \frac{(-1)^{n}(t)^{4 n+2}}{(2 n+1)!}$ and $F(x)=\int_{0}^{x} \sin t^{2} d t=\sum_{n=0}^{\infty} \frac{\left.(-1)^{n} \frac{(t)^{4 n+3}}{4 n+3}\right|_{0} ^{x}}{(2 n+1)!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+3}}{(4 n+3) \cdot(2 n+1)!}$.
On the interval $[0,1]$ the series is alternating because $x^{4 n+3} \geq 0$ and one can see that for a fixed x in this interval $\frac{x^{4 n+3}}{(4 n+3) \cdot(2 n+1)!}$ decreases to 0 . Hence the estimate associated to the Alternating Series Test applies.

This says that the polynomial of degree $m, \sum_{n=0}^{m} \frac{(-1)^{n} x^{4 n+3}}{(4 n+3) \cdot(2 n+1)!}$ has the property that $\left|F(x)-\sum_{n=0}^{m} \frac{(-1)^{n} x^{4 n+3}}{(4 n+3) \cdot(2 n+1)!}\right| \leq \frac{x^{4 m+7}}{(4 m+7) \cdot(2 m+3)!}$ for every x in the interval $[0,1]$. Since $x^{4 m+7}$ increases as x does, $\left|F(x)-\sum_{n=0}^{m} \frac{(-1)^{n} x^{4 n+3}}{(4 n+3) \cdot(2 n+1)!}\right| \leq \frac{1}{(4 m+7) \cdot(2 m+3)!}$ and we may choose any m so that $\frac{1}{(4 m+7) \cdot(2 m+3)!}<10^{-3}$. When $m=1,(4 m+7)$. $(2 m+3)!=11 \cdot 5!=11 \cdot 120=1320>1000$. Hence the polynomial $\frac{x^{3}}{3}-\frac{x^{7}}{42}$ approximates $F(x)$ to within 10^{-3} on the interval $[0,1]$. The answer in the back of the book is not completely correct. If one is approximating $F(x)$ one would like to see a polynomial in x, not t. The book is not wrong to include an extra term. Once the polynomial of degree m works, so does the polynomial of degree $m+1$.
\# 53. Find $\lim _{x \rightarrow \infty} x^{2}\left(e^{\frac{-1}{x^{2}}}-1\right)$. Since $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} e^{\frac{-1}{x^{2}}}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!x^{2 n}}$ so $e^{\frac{-1}{x^{2}}}-1=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!x^{2 n}}$ and hence $x^{2}\left(e^{\frac{-1}{x^{2}}}-1\right)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!x^{2 n-2}}=\sum_{n=0}^{\infty} \frac{(-1)^{n-1}}{(n+1)!x^{2 n}}$. As $x \rightarrow \infty, \frac{1}{x^{2}}$ goes to 0 so only the degree 0 term is left in the limit and that term is -1 .
Hence $\lim _{x \rightarrow \infty} x^{2}\left(e^{\frac{-1}{x^{2}}}-1\right)=-1$.

