
§8.11

# 1. Write the first four terms of the binomial series for (1 + x)
1
2 =

∞∑
n=0

(
1
2

n

)
xn. The first

four terms are 1 + 1
2x +

1
2 ( 1

2 − 1)
2! x2 +

1
2 ( 1

2 − 1)( 1
2 − 2)

3! x3, or 1 + 1
2x− 1

8x2 + 1
16x3.

# 5. Write the first four terms of the binomial series for (1 + x
2 )−2 =

∞∑
n=0

(
−2
n

)(
x

2

)n

.

The first four terms are 1− 2 x
2 + −2(−2− 1)

2!

(
x
2

)2

+ −2(−2− 1)(−2− 2)
3!

(
x
2

)3

, or

1− x + 3
4x2 − 1

2x3.
# 21. Solve y′ − xy = 0 with y(0) = 1. We are looking for a power series solution, y =

∞∑
n=0

anxn. Then y′ =
∞∑

n=1

nanxn−1 =
∞∑

n=0

(n + 1)an+1x
n and xy =

∞∑
n=0

anxn+1 so

y′− xy = a1 +
∞∑

n=1

(
(n + 1)an+1− an−1

)
xn. The only way a power series can vanish is

if all its coefficients vanish, so a1 = 0 and the recursion relation (n+1)an+1−an−1 = 0
holds. The initial value condition y(0) = 1 shows a0 = 1. The recursion relation can
be rewritten (k +2)ak+2 = ak, or ak+2 = ak

k+2 . Since a1 = 0, a2k+1 = 0 for all integers

k ≥ 0. Since a0 = 1, a2k = 1
2kk!

for all integers k ≥ 0. Hence y =
∞∑

n=0

x2n

2nn!
is the

solution. One can see easily that e
x2
2 =

∞∑
n=0

x2n

2nn!
as well. y = e

x2
2 is the answer

you will get if you apply your technique for solving first order linear equations to this
problem.

# 23. Solve(1−x)y′−y = 0 with y(0) = 2. Same yoga as the last problem. We are looking for

a power series solution, y =
∞∑

n=0

anxn. Then y′ =
∞∑

n=1

nanxn−1 =
∞∑

n=0

(n + 1)an+1x
n.

Then (1−x)y′ = y′−xy′ =
∞∑

n=0

(n +1)an+1x
n−

∞∑
n=0

(n+1)an+1x
n+1 = a1 +

∞∑
n=1

(
(n +

1)an+1 − nan

)
xn and (1 − x)y′ − y = a1 − a0 +

∞∑
n=1

(
(n + 1)an+1 − nan − an

)
xn =

a1−a0 +
∞∑

n=1

(n+1)(an+1−an)xn. In order for this power series to vanish, a1−a0 = 0

and an+1 − an = 0 for all n ≥ 1. Hence a0 = a1 = a2 = · · · = an = · · ·. From

the initial value condition y(0) = 2 we see a0 = 2, so y =
∞∑

n=0

2xn is our solution.

Note that this series is a geometric series so y = 2
1− x is another expression for the

solution.
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# 43. Find a polynomial that will approximate the function F (x) =
∫ x

0

sin t2 dt on the

interval [0, 1] with an error of magnitude less than 10−3. First write down an ex-

act power series solution: sinx =
∞∑

n=0

(−1)nx2n+1

(2n + 1)!
so sin t2 =

∞∑
n=0

(−1)n(t2)2n+1

(2n + 1)!
=

∞∑
n=0

(−1)n(t)4n+2

(2n + 1)!
and F (x) =

∫ x

0

sin t2dt =
∞∑

n=0

(−1)n (t)4n+3

4n + 3

∣∣∣x
0

(2n + 1)!
=

∞∑
n=0

(−1)nx4n+3

(4n + 3) · (2n + 1)!
.

On the interval [0, 1] the series is alternating because x4n+3 ≥ 0 and one can see

that for a fixed x in this interval x4n+3

(4n + 3) · (2n + 1)! decreases to 0. Hence the estimate

associated to the Alternating Series Test applies.

This says that the polynomial of degree m,
m∑

n=0

(−1)nx4n+3

(4n + 3) · (2n + 1)!
has the property

that
∣∣∣F (x) −

m∑
n=0

(−1)nx4n+3

(4n + 3) · (2n + 1)!

∣∣∣ ≤ x4m+7

(4m + 7) · (2m + 3)!
for every x in the interval

[0, 1]. Since x4m+7 increases as x does,
∣∣∣F (x)−

m∑
n=0

(−1)nx4n+3

(4n + 3) · (2n + 1)!

∣∣∣ ≤ 1
(4m + 7) · (2m + 3)!

and we may choose any m so that 1
(4m + 7) · (2m + 3)! < 10−3. When m = 1, (4m + 7) ·

(2m+3)! = 11 · 5! = 11 · 120 = 1320 > 1000. Hence the polynomial x3

3 − x7

42 approximates
F (x) to within 10−3 on the interval [0, 1]. The answer in the back of the book is not
completely correct. If one is approximating F (x) one would like to see a polynomial in x,
not t. The book is not wrong to include an extra term. Once the polynomial of degree m
works, so does the polynomial of degree m + 1.

# 53. Find lim
x→∞

x2(e
−1
x2
− 1). Since ex =

∞∑
n=0

xn

n!
e
−1
x2

=
∞∑

n=0

(−1)n

n! x2n so e
−1
x2 − 1 =

∞∑
n=1

(−1)n

n! x2n

and hence x2
(
e
−1
x2 − 1

)
=

∞∑
n=1

(−1)n

n! x2n−2 =
∞∑

n=0

(−1)n−1

(n + 1)! x2n . As x →∞, 1
x2 goes to 0

so only the degree 0 term is left in the limit and that term is −1.

Hence lim
x→∞

x2(e
−1
x2
− 1) = −1.
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