\# 1. a) and e) both label the Cartesian point (3,0).
b) and g) both label the Cartesian point $(-3,0)$.
c) and h) both label the Cartesian point $(-1, \sqrt{3})$.
d) and f) both label the Cartesian point $(1, \sqrt{3})$.

Clearly there are no further identities.
$\# 3$. a) $\left(2, \frac{\pi}{2}+2 \pi k\right)$ and $\left(-2, \frac{3 \pi}{2}+2 \pi k\right), k$ any integer are all the polar coordinates for this point, $(\sqrt{2}, \sqrt{2})$ in Cartesian corrdinates.
b) $(2,2 \pi k)$ and $(-2, \pi+2 \pi k), k$ any integer are all the polar coordinates for this point, $(2,0)$ in Cartesian corrdinates.
c) $\left(-2, \frac{\pi}{2}+2 \pi k\right)$ and $\left(2, \frac{3 \pi}{2}+2 \pi k\right), k$ any integer are all the polar coordinates for this point, $(-\sqrt{2},-\sqrt{2})$ in Cartesian corrdinates.
d) $(-2,2 \pi k)$ and $(2, \pi+2 \pi k), k$ any integer are all the polar coordinates for this point, $(-2,0)$ in Cartesian corrdinates.
$\# 5$. The answers are written in \#1 above.
$\# 7 . r=2$ is a circle centered at the pole with radius 2 .
\# 11. This is a wedge with its tip at the pole.
\# 13. This is a piece of the line through the origin with slope $\tan \left(\frac{\pi}{3}\right)=\sqrt{3}$. The left-most point on the line has Cartesian coordinates $\left(\frac{-\sqrt{3}}{2}, \frac{-1}{2}\right)$ and the right-most point has Cartesian coordinates $\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)$.
\# 23. $r \cos \theta=2$ or $x=2$: a vertical line whose x coordinate is 2 .
\# 29. $r \cos \theta+r \sin \theta=1$, or $x+y=1$. The line with slope -1 through the Cartesian point $(1,0)$.
\# 31. $r^{2}=1$, or $x^{2}+y^{2}=1$ which is the circle centered at the origin with radius 1 .
\# 37. $r=\csc \theta e^{r \cos \theta}$, or $r \sin \theta=e^{r \cos \theta}$, so $y=e^{x}$ which is the standard graph of the exponential function.
\# 55. $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$, or $\frac{r^{2} \cos ^{2} \theta}{9}+\frac{r^{2} \sin ^{2} \theta}{4}=1$. One can now write this in many forms. Multiply both sides by 36 to get the answer in the back of the book.

