§**9.06**

- # 1. a) and e) both label the Cartesian point (3,0).
 - b) and g) both label the Cartesian point (-3, 0).
 - c) and h) both label the Cartesian point $(-1, \sqrt{3})$.
 - d) and f) both label the Cartesian point $(1, \sqrt{3})$.

Clearly there are no further identities.

- # 3. a) $(2, \frac{\pi}{2} + 2\pi k)$ and $(-2, \frac{3\pi}{2} + 2\pi k)$, k any integer are all the polar coordinates for this point, $(\sqrt{2}, \sqrt{2})$ in Cartesian corrdinates.
 - b) $(2, 2\pi k)$ and $(-2, \pi + 2\pi k)$, k any integer are all the polar coordinates for this point, (2, 0) in Cartesian corrdinates.
 - c) $(-2, \frac{\pi}{2} + 2\pi k)$ and $(2, \frac{3\pi}{2} + 2\pi k)$, k any integer are all the polar coordinates for this point, $(-\sqrt{2}, -\sqrt{2})$ in Cartesian corrdinates.
 - d) $(-2, 2\pi k)$ and $(2, \pi + 2\pi k)$, k any integer are all the polar coordinates for this point, (-2, 0) in Cartesian corrdinates.
- # 5. The answers are written in #1 above.
- # 7. r = 2 is a circle centered at the pole with radius 2.
- # 11. This is a wedge with its tip at the pole.
- # 13. This is a piece of the line through the origin with slope $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$. The left-most point on the line has Cartesian coordinates $\left(\frac{-\sqrt{3}}{2}, \frac{-1}{2}\right)$ and the right-most point has Cartesian coordinates $\left(\frac{3\sqrt{3}}{2}, \frac{3}{2}\right)$.
- # 23. $r \cos \theta = 2$ or x = 2: a vertical line whose x coordinate is 2.
- # 29. $r \cos \theta + r \sin \theta = 1$, or x + y = 1. The line with slope -1 through the Cartesian point (1,0).
- # 31. $r^2 = 1$, or $x^2 + y^2 = 1$ which is the circle centered at the origin with radius 1.
- # 37. $r = \csc \theta \ e^{r \cos \theta}$, or $r \sin \theta = e^{r \cos \theta}$, so $y = e^x$ which is the standard graph of the exponential function.
- # 55. $\frac{x^2}{9} + \frac{y^2}{4} = 1$, or $\frac{r^2 \cos^2 \theta}{9} + \frac{r^2 \sin^2 \theta}{4} = 1$. One can now write this in many forms. Multiply both sides by 36 to get the answer in the back of the book.