\# 1. Area inside the oval limaçon $r=4+2 \cos \theta$. To graph, start with $\theta=0$ so $r=6$. Compute $\frac{d r}{d \theta}=-2 \sin \theta$. Interesting points are where $\frac{d r}{d \theta}$ vanishes, or at $\theta=0, \pi, 2 \pi$, etc. For these values of θ we compute $r:(6,0),(2, \pi)$ and the values repeat. Hence, starting at $\theta=0$ and rotating counterclockwise, we see the point moving in along the ray starting at 6 until at $\theta=\pi$ is has moved into 2 . As the ray moves from $\theta=\pi$ to $\theta=2 \pi$, the point move out along the ray starting a 2 and finishing at 6 . Just to get a good picture it is worthwhile to plug in $\theta=\frac{\pi}{2}$ and $\theta=\frac{3 \pi}{2}$ where $r=4$. Hence the area we want is swept out once as θ rotates from 0 to 2π.

From the formula in the book Area $\left.=\frac{1}{2} \int_{0}^{2 \pi} r^{2} d \theta=\frac{1}{2} \int_{0}^{2 \pi}(4+2 \cos \theta)^{2}\right) d \theta=$ $\frac{1}{2}\left(16 \int_{0}^{2 \pi} d \theta+16 \int_{0}^{2 \pi} \cos \theta d \theta+4 \int_{0}^{2 \pi} \cos ^{2} \theta d \theta\right)$. Do the pieces: $\int_{0}^{2 \pi} d \theta=\left.\theta\right|_{0} ^{2 \pi}=2 \pi ;$ $\int_{0}^{2 \pi} \cos \theta d \theta=\left.\sin \theta\right|_{0} ^{2 \pi}=0-0=0 ; \int_{0}^{2 \pi} \cos ^{2} \theta d \theta=\int_{0}^{2 \pi} \frac{1+\cos (2 \theta)}{2} d \theta=\frac{1}{2} \int_{0}^{2 \pi} d \theta+$ $\frac{1}{2} \int_{0}^{2 \pi} \cos (2 \theta) d \theta$. Pause to do $\int_{0}^{2 \pi} \cos (2 \theta) d \theta=\left.\frac{1}{2} \sin (2 \theta)\right|_{0} ^{2 \pi}=0-0=0$. Hence $\int_{0}^{2 \pi} \cos ^{2} \theta d \theta=$ $\frac{1}{2} \cdot 2 \pi=\pi$. Hence the Area is $\frac{1}{2}(16 \cdot 2 \pi+16 \cdot 0+4 \cdot \pi)=18 \pi$.
\# 3. Area inside one leaf of the four-leafed rose $r=\cos (2 \theta)$. Begin with the graph, starting with $\theta=0 . \frac{d r}{d \theta}=-2 \sin (2 \theta)$ which vanishes when $2 \theta=0, \pi, 2 \pi, 3 \pi, 4 \pi$, etc. or when $\theta=0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi$, etc.: r itself vanishes when $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$, etc.

A remark which is apparent if you draw the graph but not if you just look at it is that from 0 to $\frac{\pi}{4}$ you trace out the top half of the right-hand leaf, but from $\frac{\pi}{4}$ to $\frac{\pi}{2}$ you trace out the left-half of the lower leaf. You have many choices for a range of θ which
sweep out one leaf: $\left[\frac{\pi}{4}\right.$ to $\left.\frac{3 \pi}{4}\right]$ sweeps out the lower leaf; $\left[\frac{3 \pi}{4}\right.$ to $\left.\frac{5 \pi}{4}\right]$ sweeps out the left-hand leaf; $\left[\frac{5 \pi}{4}\right.$ to $\left.\frac{7 \pi}{4}\right]$ sweeps out the upper-hand leaf; $\left[\frac{7 \pi}{4}\right.$ to $\left.\frac{9 \pi}{4}\right]$ sweeps out the right-hand leaf. We can also sweep out the right-hand leaf with $\left[-\frac{\pi}{4}\right.$ to $\left.\frac{\pi}{4}\right]$ and this is the one we choose. Hence the Area is $\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} r^{2} d \theta=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos ^{2}(2 \theta) d \theta=\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1+\cos (4 \theta)}{2} d \theta=$ $\frac{1}{4}\left(\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d \theta+\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos (4 \theta) d \theta\right)$. Do the pieces: $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d \theta=\left.\theta\right|_{-\frac{\pi}{4}} ^{\frac{\pi}{4}}=\frac{\pi}{4}-\left(-\frac{\pi}{4}\right)=\frac{\pi}{4}+\frac{\pi}{4}=\frac{\pi}{2} ;$ $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos (4 \theta) d \theta=\left.\frac{1}{4} \sin (4 \theta)\right|_{-\frac{\pi}{4}} ^{\frac{\pi}{4}}=\frac{1}{4}(\sin \pi-\sin (-\pi))=0$. The Area is $\frac{1}{4} \cdot\left(\frac{\pi}{2}+0\right)=\frac{\pi}{8}$.
\# 7. Area shared by the circles $r=2 \cos \theta$ and $r=2 \sin \theta$.

By drawing the graph, you see each circle can be swept out once by letting θ run from 0 to π. The polar coordinates of the intersection point can be found by solving $2 \cos \theta=2 \sin \theta$, or $\tan \theta=1$ or $\theta=\frac{\pi}{4}$. While there are many solutions to the equation $\tan \theta=1$, they are all obtained by adding integer multiples of π to $\frac{\pi}{4}$ and we see that the only one between 0 and π is $\frac{\pi}{4}$. Hence the Area is $\frac{1}{2} \int_{0}^{\frac{\pi}{4}}(2 \sin \theta)^{2} d \theta+\frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(2 \cos \theta)^{2} d \theta=$ $2 \int_{0}^{\frac{\pi}{4}} \sin ^{2} \theta d \theta+2 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta$. Do the pieces: $\int_{0}^{\frac{\pi}{4}} \sin ^{2} \theta d \theta=\int_{0}^{\frac{\pi}{4}} \frac{1-\cos (2 \theta)}{2} d \theta=$ $\frac{1}{2}\left(\int_{0}^{\frac{\pi}{4}} d \theta-\int_{0}^{\frac{\pi}{4}} \cos (2 \theta) d \theta\right)=\frac{1}{2}\left(\left.\theta\right|_{0} ^{\frac{\pi}{4}}-\left.\frac{1}{2} \sin (2 \theta)\right|_{0} ^{\frac{\pi}{4}}\right)=\frac{1}{2}\left(\frac{\pi}{4}-\frac{1}{2}\left(\sin \frac{\pi}{2}-\sin 0\right)\right)=\frac{1}{2}\left(\frac{\pi}{4}-\right.$ $\left.\frac{1}{2}\right)=\frac{\pi}{8}-\frac{1}{4} ; \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos ^{2} \theta d \theta=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1+\cos (2 \theta)}{2} d \theta=\frac{1}{2}\left(\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d \theta+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos (2 \theta) d \theta\right)=\frac{1}{2}\left(\left.\theta\right|_{\frac{\pi}{4}} ^{\frac{\pi}{2}}+\right.$ $\left.\left.\frac{1}{2} \sin (2 \theta)\right|_{\frac{\pi}{4}} ^{\frac{\pi}{2}}\right)=\frac{1}{2}\left(\left(\frac{\pi}{2}-\frac{\pi}{4}\right)+\frac{1}{2}\left(\sin \pi-\sin \frac{\pi}{2}\right)\right)=\frac{1}{2}\left(\frac{\pi}{4}+\frac{1}{2}(0-1)\right)=\frac{\pi}{8}-\frac{1}{4}$. Hence the Area is $2\left(\frac{\pi}{8}-\frac{1}{4}\right)+2\left(\frac{\pi}{8}-\frac{1}{4}\right)=\frac{\pi}{2}-1$
\# 11. Inside the lemniscate $r^{2}=6 \cos (2 \theta)$ and outside the circle $r=\sqrt{3}$. The lemniscate can be graphed as follows. It is actually two equations $r= \pm \sqrt{6 \cos (2 \theta)}$. Intervals where $\cos (2 \theta)<0$ are excluded: these intervals are $\left(\frac{\pi}{4}, \frac{3 \pi}{4}\right),\left(\frac{5 \pi}{4}, \frac{7 \pi}{4}\right)$, etc. The right-hand loop of the lemniscate is traced out by starting θ at $-\frac{\pi}{4}$ and going to $\frac{\pi}{4}$. The entire lemniscate can be described as the graph of $r=\sqrt{6 \cos (2 \theta)}$ where θ runs over the
intervals $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ and $\left[\frac{3 \pi}{4}, \frac{5 \pi}{4}\right]$. Next we need to find the four points of intersection, so solve $6 \cos (2 \theta)=r^{2}=3$ or $\cos (2 \theta)=\frac{1}{2}$ so $2 \theta=\frac{\pi}{3}+2 k \pi$, k an integer, or $2 \theta=-\frac{\pi}{3}+2 k \pi$. Hence $\theta= \pm \frac{\pi}{6}+k \pi$ and the four points are $\theta=\frac{\pi}{6}$ (1st quadrant); $-\frac{\pi}{6}$ (4th quadrant); $\frac{7 \pi}{6}$ (3rd quadrant); and $\frac{5 \pi}{6}$ (2nd quadrant).

The desired Area is $\frac{1}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}}\left(6 \cos (2 \theta)-(\sqrt{3})^{2}\right) d \theta+\frac{1}{2} \int_{\frac{5 \pi}{6}}^{\frac{7 \pi}{6}}\left(6 \cos (2 \theta)-(\sqrt{3})^{2}\right) d \theta=$ $3 \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \cos (2 \theta) d \theta-\frac{3}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} d \theta+3 \int_{\frac{5 \pi}{6}}^{\frac{7 \pi}{6}} \cos (2 \theta) d \theta-\frac{3}{2} \int_{\frac{5 \pi}{6}}^{\frac{7 \pi}{6}} d \theta=\left.3 \sin (2 \theta)\right|_{-\frac{\pi}{6}} ^{\frac{\pi}{6}}-\left.\frac{3}{2} \theta\right|_{-\frac{\pi}{6}} ^{\frac{\pi}{6}}+$ $\left.3 \sin (2 \theta)\right|_{\frac{5 \pi}{6}} ^{\frac{7 \pi}{6}}-\left.\frac{3}{2} \theta\right|_{\frac{5 \pi}{6}} ^{\frac{7 \pi}{6}}=3\left(\sin \left(\frac{\pi}{3}\right)-\sin \left(-\frac{\pi}{3}\right)\right)-\frac{3}{2}\left(\frac{\pi}{6}-\left(-\frac{\pi}{6}\right)\right)+3\left(\sin \left(\frac{7 \pi}{3}\right)-\sin \left(\frac{5 \pi}{3}\right)\right)-\frac{3}{2}\left(\frac{7 \pi}{6}-\right.$ $\left.\left(\frac{5 \pi}{6}\right)\right)$. Now $\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2} ; \sin \left(-\frac{\pi}{3}\right)=-\sin \left(\frac{\pi}{3}\right)$. Since $\frac{7 \pi}{3}=2 \pi+\frac{\pi}{3}, \sin \left(\frac{7 \pi}{3}\right)=\sin \left(\frac{\pi}{3}\right)$ and similarly, $\sin \left(\frac{5 \pi}{3}\right)=\sin \left(-\frac{\pi}{3}\right)=-\sin \left(\frac{\pi}{3}\right)$. Hence Area $=6 \frac{\sqrt{3}}{2}-\frac{3}{2} \frac{2 \pi}{3}=3 \sqrt{3}-\pi$.
\# 21. Find the length of the cardioid $r=1+\cos \theta$.

The graph is swept out once as θ runs from 0 to 2π. Length $=\int_{0}^{2 \pi} \sqrt{r^{2}+\left(r^{\prime}\right)^{2}} d \theta$. Compute as follows. $\frac{d r}{d \theta}=-\sin \theta$, so $\left(r^{\prime}\right)^{2}=\sin ^{2} \theta$ so $r^{2}+\left(r^{\prime}\right)^{2}=(1+\cos \theta)^{2}+\sin ^{2} \theta=$ $1+2 \cos \theta+\cos ^{2} \theta+\sin ^{2} \theta=2+2 \cos \theta=2(1+\cos \theta)=4 \frac{1+\cos \theta}{2}=4 \cos ^{2}\left(\frac{\theta}{2}\right)$. Hence Length $=\int_{0}^{2 \pi} \sqrt{4 \cos ^{2}\left(\frac{\theta}{2}\right)} d \theta=2 \int_{0}^{2 \pi}\left|\cos \left(\frac{\theta}{2}\right)\right| d \theta=2 \int_{0}^{\pi} \cos \left(\frac{\theta}{2}\right) d \theta-2 \int_{\pi}^{2 \pi} \cos \left(\frac{\theta}{2}\right) d \theta=$ $2\left(\left.2 \sin \left(\frac{\theta}{2}\right)\right|_{0} ^{\pi}\right)-2\left(\left.2 \sin \left(\frac{\theta}{2}\right)\right|_{\pi} ^{2 \pi}\right)=2\left(2 \sin \left(\frac{\pi}{2}\right)-2 \sin (0)\right)-2\left(2 \sin (\pi)-2 \sin \left(\frac{\pi}{2}\right)\right)=8$.
\# 25. Find the length of the curve $r=\cos ^{3}\left(\frac{\theta}{3}\right) 0 \leq \theta \leq \frac{\pi}{4}$. There is no need to graph this curve since we are told the limits of integration, but just for the record, here is the graph.

Next compute $\frac{d r}{d \theta}=3 \cos ^{2}\left(\frac{\theta}{3}\right)\left(-\sin \left(\frac{\theta}{3}\right) \frac{1}{3}\right)=-\sin \left(\frac{\theta}{3}\right) \cos ^{2}\left(\frac{\theta}{3}\right)$. Hence $r^{2}+\left(r^{\prime}\right)^{2}=$ $\cos ^{6}\left(\frac{\theta}{3}\right)+\sin ^{2}\left(\frac{\theta}{3}\right) \cos ^{4}\left(\frac{\theta}{3}\right)=\cos ^{4}\left(\frac{\theta}{3}\right)\left(\cos ^{2}\left(\frac{\theta}{3}\right)+\sin ^{2}\left(\frac{\theta}{3}\right)\right)=\cos ^{4}\left(\frac{\theta}{3}\right)$. Between 0 and $\frac{\pi}{4}$, $\cos \left(\frac{\theta}{3}\right)>0$, so Length $=\int_{0}^{\frac{\pi}{4}} \sqrt{r^{2}+\left(r^{\prime}\right)^{2}} d \theta=\int_{0}^{\frac{\pi}{4}} \cos ^{2}\left(\frac{\theta}{3}\right) d \theta=\int_{0}^{\frac{\pi}{4}} \frac{1+\cos \left(\frac{2 \theta}{3}\right)}{2} d \theta=$ $\frac{1}{2} \int_{0}^{\frac{\pi}{4}} d \theta+\frac{1}{2} \int_{0}^{\frac{\pi}{4}} \cos \left(\frac{2 \theta}{3}\right) d \theta=\left.\frac{1}{2} \theta\right|_{0} ^{\frac{\pi}{4}}+\frac{1}{2}\left(\left.\frac{3}{2} \sin \left(\frac{2 \theta}{3}\right)\right|_{0} ^{\frac{\pi}{4}}\right)=\frac{1}{2}\left(\frac{\pi}{4}-0\right)+\frac{3}{4}\left(\sin \left(\frac{\pi}{6}\right)-\sin (0)\right)=$ $\frac{\pi}{8}+\frac{3}{8}$.
\# 29. Find the surface area generated by revolving $r=\sqrt{\cos (2 \theta)}, 0 \leq \theta \leq \frac{\pi}{4}$ about the y-axis. Again the graph is not necessary but is included so you may practice if you wish.

Compute as follows. $\quad \frac{d r}{d \theta}=\frac{-(\sin (2 \theta)) 2}{2 \sqrt{\cos (2 \theta)}}=-\frac{\sin (2 \theta)}{\sqrt{\cos (2 \theta)}} ; r^{2}+\left(r^{\prime}\right)^{2}=\cos (2 \theta)+$ $\frac{\sin ^{2}(2 \theta)}{\cos (2 \theta)}=\frac{\cos ^{2}(2 \theta)+\sin ^{2}(2 \theta)}{\cos (2 \theta)}=\frac{1}{\cos (2 \theta)}$. Hence $\sqrt{r^{2}+\left(r^{\prime}\right)^{2}}=\frac{1}{\sqrt{\cos (2 \theta)}}$. From the book we have the formula, SurfaceArea $=2 \pi \int_{0}^{\frac{\pi}{4}} r \cos \theta \sqrt{r^{2}+\left(r^{\prime}\right)^{2}} d \theta=$

$$
2 \pi \int_{0}^{\frac{\pi}{4}} \sqrt{\cos (2 \theta)} \cos \theta \frac{1}{\sqrt{\cos (2 \theta)}} d \theta=2 \pi \int_{0}^{\frac{\pi}{4}} \cos \theta d \theta=\left.2 \pi \sin \theta\right|_{0} ^{\frac{\pi}{4}}=2 \pi\left(\sin \left(\frac{\pi}{4}\right)-\right.
$$

$\sin (0))=2 \pi \frac{\sqrt{2}}{2}=\pi \sqrt{2}$
\# 31. Find the surface area generated by revolving $r^{2}=\cos (2 \theta)$ about the x-axis. This time a graph is helpful in determining the limits of integration.

The function $\cos (2 \theta)$ vanishes at $-\frac{\pi}{4}, \frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}$, etc. so the curve can be described as $r=\sqrt{\cos (2 \theta)}$ for $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ and $\left[\frac{3 \pi}{4}, \frac{5 \pi}{4}\right]$.

A further problem occurs. To get the surface of revolution, we should only rotate the top half or the bottom half of the curve. The right-hand branch can be swept out by letting θ run from 0 to $\frac{\pi}{4}$, which sweeps out the top half of the right-hand piece. The top half of the left-hand piece needs θ to run from $\frac{3 \pi}{4}$ to π.

The next step is to compute $\sqrt{r^{2}+\left(r^{\prime}\right)^{2}}$. We just did this in $\# 29$ and we got $\sqrt{r^{2}+\left(r^{\prime}\right)^{2}}=\frac{1}{\sqrt{\cos (2 \theta)}}$.

$$
\begin{gathered}
\text { Hence SurfaceArea }=2 \pi \int_{0}^{\frac{\pi}{4}} \sqrt{\cos (2 \theta)} \sin \theta \frac{d \theta}{\sqrt{\cos (2 \theta)}}+2 \pi \int_{\frac{3 \pi}{4}}^{\pi} \sqrt{\cos (2 \theta)} \sin \theta \frac{d \theta}{\sqrt{\cos (2 \theta)}}= \\
2 \pi \int_{0}^{\frac{\pi}{4}} \sin \theta d \theta+2 \pi \int_{\frac{3 \pi}{4}}^{\pi} \sin \theta d \theta=2 \pi\left(\left.(-\cos \theta)\right|_{0} ^{\frac{\pi}{4}}+\left.(-\cos \theta)\right|_{\frac{3 \pi}{4}} ^{\pi}\right)=2 \pi\left(\left(\left(-\cos \left(\frac{\pi}{4}\right)\right)-\right.\right. \\
\left.(-\cos (0)))+\left((-\cos (\pi))-\left(-\cos \left(\frac{3 \pi}{4}\right)\right)\right)\right) . \text { Since } \cos \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} ; \cos (0)=1 ; \cos (\pi)=-1
\end{gathered}
$$ and $\cos \left(\frac{3 \pi}{4}\right)=-\frac{\sqrt{2}}{2}$ we get SurfaceArea $=2 \pi(2-\sqrt{2})$.

\# 37. Find the centroid of the region enclosed by the cardioid $r=a(1+\cos \theta)$. Look at \#21 for the graph of the cardioid with $a=1$ and recall that the cure is swept out once as θ runs from 0 to 2π.
To find the centroid we first calculate the area: Area $=\frac{1}{2} \int_{0}^{2 \pi}(a(1+\cos \theta))^{2} d \theta=$ $\frac{a^{2}}{2} \int_{0}^{2 \pi}\left(1+2 \cos \theta+\cos ^{2} \theta\right) d \theta=\frac{a^{2}}{2}\left(\int_{0}^{2 \pi} d \theta+2 \int_{0}^{2 \pi} \cos \theta d \theta+\int_{0}^{2 \pi} \cos ^{2} \theta d \theta\right)=\frac{a^{2}}{2}\left(\int_{0}^{2 \pi} d \theta+\right.$ $\left.2 \int_{0}^{2 \pi} \cos \theta d \theta+\int_{0}^{2 \pi} \frac{1+\cos (2 \theta)}{2} d \theta\right)=\frac{a^{2}}{2}\left(\frac{3}{2} \int_{0}^{2 \pi} d \theta+2 \int_{0}^{2 \pi} \cos \theta d \theta+\frac{1}{2} \int_{0}^{2 \pi} \cos (2 \theta) d \theta\right)$. The integral involving $\cos \theta$ is 0 as is the integral involving $\cos (2 \theta)$ so Area $=\frac{6 \pi a^{2}}{4}$. Now we turn to the moments.

The moment about the x-axis is $\frac{1}{3} \int_{0}^{2 \pi} r^{3} \sin \theta d \theta=\frac{1}{3} \int_{0}^{2 \pi} a^{3}(1+\cos \theta)^{3} \sin \theta d \theta$. Substitute $u=1+\cos \theta, d u=-\sin \theta d \theta . \int_{0}^{2 \pi} a^{3}(1+\cos \theta)^{3} \sin \theta d \theta=-\int_{2}^{2} a^{3} u^{3} d u=0$. Once can also argue from symmetry: there is as much of the curve above the x-axis as below it.

The moment about the y-axis is $\frac{1}{3} \int_{0}^{2 \pi} r^{3} \cos \theta d \theta=\frac{1}{3} \int_{0}^{2 \pi} a^{3}(1+\cos \theta)^{3} \cos \theta d \theta=$ $\frac{a^{3}}{3} \int_{0}^{2 \pi}\left(1+3 \cos \theta+3 \cos ^{2} \theta+\cos ^{3} \theta\right) \cos \theta d \theta=\frac{a^{3}}{3} \int_{0}^{2 \pi}\left(\cos \theta+3 \cos ^{2} \theta+3 \cos ^{3} \theta+\cos ^{4} \theta\right) d \theta=$.

We can do $\int \cos ^{4} d \theta$ by parts as follows. Let $u=\cos ^{3} \theta, d v=\cos \theta d \theta$. Then $d u=$ $-3 \cos ^{2} \theta \sin \theta d \theta$ and $v=\sin \theta$. Hence $\int \cos ^{4} d \theta=\cos ^{3} \theta \sin \theta-\int\left(\sin \theta\left(-3 \cos ^{2} \theta \sin \theta\right) d \theta=\right.$ $\cos ^{3} \theta \sin \theta+3 \int \cos ^{2} \theta \sin ^{2} \theta d \theta$. Now write $\sin ^{2} \theta=1-\cos ^{2} \theta$ so $\int \cos ^{2} \theta \sin ^{2} \theta d \theta=$ $\int \cos ^{2} \theta d \theta-\int \cos ^{4} \theta d \theta$. Plug back in and solve for $\int \cos ^{4} \theta d \theta: 4 \int \cos ^{4} \theta d \theta=\cos ^{3} \theta \sin \theta+$ $3 \int \cos ^{2} \theta d \theta$, or $\int \cos ^{4} \theta d \theta=\frac{\cos ^{3} \theta \sin \theta}{4}+\frac{3}{4} \int \cos ^{2} \theta d \theta$.

A similar Integration by Parts and solving for the integral gives $\int \cos ^{3} \theta d \theta=\frac{\cos ^{2} \theta \sin \theta}{3}+$ $\frac{2}{3} \int \cos \theta d \theta$.

Hence $\int_{0}^{2 \pi}\left(\cos \theta+3 \cos ^{2} \theta+3 \cos ^{3} \theta+\cos ^{4} \theta\right) d \theta=\int_{0}^{2 \pi}\left(3 \cos \theta+\frac{15}{4} \cos ^{2} \theta\right) d \theta+$ $\left.\cos ^{2} \theta \sin \theta\right|_{0} ^{2 \pi}+\left.\frac{\cos ^{3} \theta \sin \theta}{4}\right|_{0} ^{2 \pi}$. Further $\int_{0}^{2 \pi} \cos \theta d \theta=0$ and $\int_{0}^{2 \pi} \cos ^{2} \theta d \theta=\int_{0}^{2 \pi} \frac{1+\cos (2 \theta)}{2} d \theta=$ π. Hence the moment about the y-axis $=\frac{a^{3}}{3} \frac{15 \pi}{4}=\frac{5 \pi a^{3}}{4}$.

Therefore, the x coordinate of the center of mass is $\frac{\frac{5 \pi a^{3}}{4}}{\frac{6 \pi a^{2}}{4}}=\frac{5 a}{6}$. The y coordinate of the center of mass is 0 .

