§9.09

1. Area inside the oval limaçon $r = 4 + 2\cos\theta$. To graph, start with $\theta = 0$ so r = 6. Compute $\frac{dr}{d\theta} = -2\sin\theta$. Interesting points are where $\frac{dr}{d\theta}$ vanishes, or at $\theta = 0, \pi, 2\pi$, etc. For these values of θ we compute r: (6,0), (2, π) and the values repeat. Hence, starting at $\theta = 0$ and rotating counterclockwise, we see the point moving in along the ray starting at 6 until at $\theta = \pi$ is has moved into 2. As the ray moves from $\theta = \pi$ to $\theta = 2\pi$, the point move out along the ray starting a 2 and finishing at 6. Just to get a good picture it is worthwhile to plug in $\theta = \frac{\pi}{2}$ and $\theta = \frac{3\pi}{2}$ where r = 4. Hence the area we want is swept out once as θ rotates from 0 to 2π .

From the formula in the book **Area** =
$$\frac{1}{2} \int_{0}^{2\pi} r^2 d\theta = \frac{1}{2} \int_{0}^{2\pi} (4 + 2\cos\theta)^2) d\theta = \frac{1}{2} \left(16 \int_{0}^{2\pi} d\theta + 16 \int_{0}^{2\pi} \cos\theta \, d\theta + 4 \int_{0}^{2\pi} \cos^2\theta \, d\theta \right)$$
. Do the pieces: $\int_{0}^{2\pi} d\theta = \theta \Big|_{0}^{2\pi} = 2\pi$;
 $\int_{0}^{2\pi} \cos\theta \, d\theta = \sin\theta \Big|_{0}^{2\pi} = 0 - 0 = 0$; $\int_{0}^{2\pi} \cos^2\theta \, d\theta = \int_{0}^{2\pi} \frac{1 + \cos(2\theta)}{2} d\theta = \frac{1}{2} \int_{0}^{2\pi} d\theta + \frac{1}{2} \int_{0}^{2\pi} \cos(2\theta) d\theta$. Pause to do $\int_{0}^{2\pi} \cos(2\theta) d\theta = \frac{1}{2} \sin(2\theta) \Big|_{0}^{2\pi} = 0 - 0 = 0$. Hence $\int_{0}^{2\pi} \cos^2\theta \, d\theta = \frac{1}{2} \cdot 2\pi = \pi$. Hence the **Area** is $\frac{1}{2} (16 \cdot 2\pi + 16 \cdot 0 + 4 \cdot \pi) = 18\pi$.

3. Area inside one leaf of the four-leafed rose $r = \cos(2\theta)$. Begin with the graph, starting with $\theta = 0$. $\frac{dr}{d\theta} = -2\sin(2\theta)$ which vanishes when $2\theta = 0$, π , 2π , 3π , 4π , etc. or when $\theta = 0$, $\frac{\pi}{2}$, π , $\frac{3\pi}{2}$, 2π , etc.: r itself vanishes when $\theta = \frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, $\frac{7\pi}{4}$, etc.

A remark which is apparent if **you** draw the graph but not if you just look at it is that from 0 to $\frac{\pi}{4}$ you trace out the top half of the right-hand leaf, **but** from $\frac{\pi}{4}$ to $\frac{\pi}{2}$ you trace out the left-half of the lower leaf. You have many choices for a range of θ which sweep out one leaf: $\left[\frac{\pi}{4} \text{ to } \frac{3\pi}{4}\right]$ sweeps out the lower leaf; $\left[\frac{3\pi}{4} \text{ to } \frac{5\pi}{4}\right]$ sweeps out the left-hand leaf; $\left[\frac{5\pi}{4} \text{ to } \frac{7\pi}{4}\right]$ sweeps out the left-hand leaf; $\left[\frac{7\pi}{4} \text{ to } \frac{9\pi}{4}\right]$ sweeps out the right-hand leaf. We can also sweep out the right-hand leaf with $\left[-\frac{\pi}{4} \text{ to } \frac{\pi}{4}\right]$ and this is the one we choose. Hence the **Area** is $\frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} r^2 d\theta = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(2\theta) d\theta = \frac{1}{2} \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1 + \cos(4\theta)}{2} d\theta = \frac{1}{4} \left(\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d\theta + \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos(4\theta) d\theta \right)$. Do the pieces: $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} d\theta = \theta \Big|_{-\frac{\pi}{4}}^{\frac{\pi}{4}} = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$; $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos(4\theta) d\theta = \frac{1}{4} \sin(4\theta) \Big|_{-\frac{\pi}{4}}^{\frac{\pi}{4}} = \frac{1}{4} (\sin \pi - \sin(-\pi)) = 0$. The **Area** is $\frac{1}{4} \cdot \left(\frac{\pi}{2} + 0\right) = \frac{\pi}{8}$.

7. Area shared by the circles $r = 2\cos\theta$ and $r = 2\sin\theta$.

By drawing the graph, you see each circle can be swept out once by letting θ run from 0 to π . The polar coordinates of the intersection point can be found by solving $2\cos\theta = 2\sin\theta$, or $\tan\theta = 1$ or $\theta = \frac{\pi}{4}$. While there are many solutions to the equation $\tan\theta = 1$, they are all obtained by adding integer multiples of π to $\frac{\pi}{4}$ and we see that the only one between 0 and π is $\frac{\pi}{4}$. Hence the **Area** is $\frac{1}{2} \int_{0}^{\frac{\pi}{4}} (2\sin\theta)^2 d\theta + \frac{1}{2} \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (2\cos\theta)^2 d\theta = 2 \int_{0}^{\frac{\pi}{4}} \sin^2\theta \ d\theta + 2 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos^2\theta \ d\theta$. Do the pieces: $\int_{0}^{\frac{\pi}{4}} \sin^2\theta \ d\theta = \int_{0}^{\frac{\pi}{4}} \frac{1 - \cos(2\theta)}{2} d\theta = \frac{1}{2} \left(\int_{0}^{\frac{\pi}{4}} d\theta - \int_{0}^{\frac{\pi}{4}} \cos(2\theta) d\theta \right) = \frac{1}{2} \left(\theta \Big|_{0}^{\frac{\pi}{4}} - \frac{1}{2}\sin(2\theta) \Big|_{0}^{\frac{\pi}{4}} \right) = \frac{1}{2} \left(\frac{\pi}{4} - \frac{1}{2} (\sin\frac{\pi}{2} - \sin0) \right) = \frac{1}{2} \left(\frac{\pi}{4} - \frac{1}{2} (\sin\frac{\pi}{2} - \sin0) \right) = \frac{1}{2} \left(\frac{\pi}{4} - \frac{1}{2} (\sin(2\theta) d\theta) \right) = \frac{1}{2} \left(\theta \Big|_{\frac{\pi}{4}}^{\frac{\pi}{4}} + \frac{1}{2} \sin(2\theta) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{4}} d\theta + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos(2\theta) d\theta \right) = \frac{1}{2} \left(\theta \Big|_{\frac{\pi}{4}}^{\frac{\pi}{4}} - \frac{1}{2} \sin(2\theta) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{4}} d\theta + \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \cos(2\theta) d\theta \right) = \frac{1}{2} \left(\theta \Big|_{\frac{\pi}{4}}^{\frac{\pi}{4}} - \frac{1}{2} (\sin(2\theta) \Big|_{\frac{\pi}{4}}^{\frac{\pi}{4}} - \frac{1}{2} (\sin(2$

11. Inside the lemniscate $r^2 = 6\cos(2\theta)$ and outside the circle $r = \sqrt{3}$. The lemniscate can be graphed as follows. It is actually two equations $r = \pm \sqrt{6}\cos(2\theta)$. Intervals where $\cos(2\theta) < 0$ are excluded: these intervals are $(\frac{\pi}{4}, \frac{3\pi}{4}), (\frac{5\pi}{4}, \frac{7\pi}{4})$, etc. The right-hand loop of the lemniscate is traced out by starting θ at $-\frac{\pi}{4}$ and going to $\frac{\pi}{4}$. The entire lemniscate can be described as the graph of $r = \sqrt{6}\cos(2\theta)$ where θ runs over the intervals $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ and $\left[\frac{3\pi}{4}, \frac{5\pi}{4}\right]$. Next we need to find the four points of intersection, so solve $6\cos(2\theta) = r^2 = 3$ or $\cos(2\theta) = \frac{1}{2}$ so $2\theta = \frac{\pi}{3} + 2k\pi$, k an integer, or $2\theta = -\frac{\pi}{3} + 2k\pi$. Hence $\theta = \pm \frac{\pi}{6} + k\pi$ and the four points are $\theta = \frac{\pi}{6}$ (1st quadrant); $-\frac{\pi}{6}$ (4th quadrant); $\frac{7\pi}{6}$ (3rd quadrant); and $\frac{5\pi}{6}$ (2nd quadrant).

The desired **Area** is
$$\frac{1}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} (6\cos(2\theta) - (\sqrt{3})^2) d\theta + \frac{1}{2} \int_{\frac{5\pi}{6}}^{\frac{7\pi}{6}} (6\cos(2\theta) - (\sqrt{3})^2) d\theta = 3\int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} \cos(2\theta) d\theta - \frac{3}{2} \int_{-\frac{\pi}{6}}^{\frac{\pi}{6}} d\theta + 3\int_{\frac{5\pi}{6}}^{\frac{7\pi}{6}} \cos(2\theta) d\theta - \frac{3}{2} \int_{\frac{5\pi}{6}}^{\frac{7\pi}{6}} d\theta = 3\sin(2\theta) \Big|_{-\frac{\pi}{6}}^{\frac{\pi}{6}} - \frac{3}{2}\theta \Big|_{-\frac{\pi}{6}}^{\frac{\pi}{6}} + 3\sin(2\theta) \Big|_{\frac{5\pi}{6}}^{\frac{\pi}{6}} - \frac{3}{2}\theta \Big|_{\frac{5\pi}{6}}^{\frac{\pi}{6}} - 3\sin(\frac{\pi}{3}) - \sin(-\frac{\pi}{3}) \Big|_{\frac{3}{2}}^{\frac{\pi}{6}} - (-\frac{\pi}{6}) \Big|_{\frac{5\pi}{3}}^{\frac{\pi}{6}} - \sin(\frac{\pi}{3}) \Big|_{\frac{5\pi}{6}}^{\frac{\pi}{6}} - \frac{3}{2}\theta \Big|_{\frac{5\pi}{6}}^{\frac{\pi}{6}} - \frac{3}{$$

21. Find the length of the cardioid $r = 1 + \cos \theta$.

The graph is swept out once as θ runs from 0 to 2π . Length= $\int_{0}^{2\pi} \sqrt{r^{2} + (r')^{2}} d\theta$. Compute as follows. $\frac{dr}{d\theta} = -\sin\theta$, so $(r')^{2} = \sin^{2}\theta$ so $r^{2} + (r')^{2} = (1 + \cos\theta)^{2} + \sin^{2}\theta = 1 + 2\cos\theta + \cos^{2}\theta + \sin^{2}\theta = 2 + 2\cos\theta = 2(1 + \cos\theta) = 4\frac{1 + \cos\theta}{2} = 4\cos^{2}(\frac{\theta}{2})$. Hence Length = $\int_{0}^{2\pi} \sqrt{4\cos^{2}(\frac{\theta}{2})} d\theta = 2\int_{0}^{2\pi} \left|\cos(\frac{\theta}{2})\right| d\theta = 2\int_{0}^{\pi} \cos(\frac{\theta}{2}) d\theta - 2\int_{\pi}^{2\pi} \cos(\frac{\theta}{2}) d\theta = 2\left(2\sin(\frac{\theta}{2})\right) d\theta = 2\left(2\sin(\frac{\theta}{2}) - 2\sin(0)\right) - 2\left(2\sin(\pi) - 2\sin(\frac{\pi}{2})\right) = 8.$ # 25. Find the length of the curve $r = \cos^3\left(\frac{\theta}{3}\right) \ 0 \le \theta \le \frac{\pi}{4}$. There is no need to graph this curve since we are told the limits of integration, but just for the record, here is the graph.

Next compute
$$\frac{dr}{d\theta} = 3\cos^2\left(\frac{\theta}{3}\right)\left(-\sin\left(\frac{\theta}{3}\right)\frac{1}{3}\right) = -\sin\left(\frac{\theta}{3}\right)\cos^2\left(\frac{\theta}{3}\right)$$
. Hence $r^2 + (r')^2 = \cos^6\left(\frac{\theta}{3}\right) + \sin^2\left(\frac{\theta}{3}\right)\cos^4\left(\frac{\theta}{3}\right) = \cos^4\left(\frac{\theta}{3}\right)\left(\cos^2\left(\frac{\theta}{3}\right) + \sin^2\left(\frac{\theta}{3}\right)\right) = \cos^4\left(\frac{\theta}{3}\right)$. Between 0 and $\frac{\pi}{4}$, $\cos\left(\frac{\theta}{3}\right) > 0$, so **Length** $= \int_0^{\frac{\pi}{4}} \sqrt{r^2 + (r')^2} \, d\theta = \int_0^{\frac{\pi}{4}} \cos^2\left(\frac{\theta}{3}\right) \, d\theta = \int_0^{\frac{\pi}{4}} \frac{1 + \cos\left(\frac{2\theta}{3}\right)}{2} \, d\theta = \frac{1}{2}\int_0^{\frac{\pi}{4}} d\theta + \frac{1}{2}\int_0^{\frac{\pi}{4}} \cos\left(\frac{2\theta}{3}\right) \, d\theta = \frac{1}{2}\theta\Big|_0^{\frac{\pi}{4}} + \frac{1}{2}\left(\frac{3}{2}\sin\left(\frac{2\theta}{3}\right)\Big|_0^{\frac{\pi}{4}}\right) = \frac{1}{2}\left(\frac{\pi}{4} - 0\right) + \frac{3}{4}\left(\sin\left(\frac{\pi}{6}\right) - \sin(0)\right) = \frac{\pi}{8} + \frac{3}{8}.$

29. Find the surface area generated by revolving $r = \sqrt{\cos(2\theta)}$, $0 \le \theta \le \frac{\pi}{4}$ about the *y*-axis. Again the graph is not necessary but is included so you may practice if you wish.

Compute as follows.
$$\frac{dr}{d\theta} = \frac{-(\sin(2\theta))2}{2\sqrt{\cos(2\theta)}} = -\frac{\sin(2\theta)}{\sqrt{\cos(2\theta)}}; r^2 + (r')^2 = \cos(2\theta) + \frac{\sin^2(2\theta)}{\cos(2\theta)} = \frac{1}{\cos(2\theta)} = \frac{1}{\cos(2\theta)}.$$
 Hence $\sqrt{r^2 + (r')^2} = \frac{1}{\sqrt{\cos(2\theta)}}.$ From the book we have the formula, **SurfaceArea** = $2\pi \int_0^{\frac{\pi}{4}} r \cos \theta \sqrt{r^2 + (r')^2} d\theta = 2\pi \int_0^{\frac{\pi}{4}} \sqrt{\cos(2\theta)} \cos \theta \frac{1}{\sqrt{\cos(2\theta)}} d\theta = 2\pi \int_0^{\frac{\pi}{4}} \cos \theta d\theta = 2\pi \sin \theta \Big|_0^{\frac{\pi}{4}} = 2\pi \Big(\sin(\frac{\pi}{4}) - \frac{\pi}{4}\Big)$

$$\sin(0)\Big) = 2\pi \frac{\sqrt{2}}{2} = \pi \sqrt{2}$$

31. Find the surface area generated by revolving $r^2 = \cos(2\theta)$ about the *x*-axis. This time a graph is helpful in determining the limits of integration.

The function $\cos(2\theta)$ vanishes at $-\frac{\pi}{4}$, $\frac{\pi}{4}$, $\frac{3\pi}{4}$, $\frac{5\pi}{4}$, etc. so the curve can be described as $r = \sqrt{\cos(2\theta)}$ for $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ and $\left[\frac{3\pi}{4}, \frac{5\pi}{4}\right]$.

A further problem occurs. To get the surface of revolution, we should only rotate the top half or the bottom half of the curve. The right-hand branch can be swept out by letting θ run from 0 to $\frac{\pi}{4}$, which sweeps out the top half of the right-hand piece. The top half of the left-hand piece needs θ to run from $\frac{3\pi}{4}$ to π .

The next step is to compute $\sqrt{r^2 + (r')^2}$. We just did this in #29 and we got $\sqrt{r^2 + (r')^2} = \frac{1}{\sqrt{\cos(2\theta)}}$. Hence **SurfaceArea** $= 2\pi \int_0^{\frac{\pi}{4}} \sqrt{\cos(2\theta)} \sin \theta \frac{d\theta}{\sqrt{\cos(2\theta)}} + 2\pi \int_{\frac{3\pi}{4}}^{\frac{\pi}{4}} \sqrt{\cos(2\theta)} \sin \theta \frac{d\theta}{\sqrt{\cos(2\theta)}} =$

$$2\pi \int_{0}^{\frac{\pi}{4}} \sin\theta \, d\theta + 2\pi \int_{\frac{3\pi}{4}}^{\pi} \sin\theta \, d\theta = 2\pi \left(\left(-\cos\theta \right) \Big|_{0}^{\frac{\pi}{4}} + \left(-\cos\theta \right) \Big|_{\frac{3\pi}{4}}^{\pi} \right)^{4} = 2\pi \left(\left(\left(-\cos\left(\frac{\pi}{4}\right)\right) - \left(-\cos\left(\frac{\pi}{4}\right)\right) \right) + \left(\left(-\cos\left(\frac{\pi}{4}\right)\right) - \left(-\cos\left(\frac{\pi}{4}\right)\right) \right) \right)^{2} \right).$$
 Since $\cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$; $\cos(0) = 1$; $\cos(\pi) = -1$; and $\cos\left(\frac{3\pi}{4}\right) = -\frac{\sqrt{2}}{2}$ we get **SurfaceArea** = $2\pi(2 - \sqrt{2})$.

37. Find the centroid of the region enclosed by the cardioid $r = a(1 + \cos \theta)$. Look at #21 for the graph of the cardioid with a = 1 and recall that the cure is swept out once as θ runs from 0 to 2π .

To find the centroid we first calculate the area:
$$\mathbf{Area} = \frac{1}{2} \int_{0}^{2\pi} \left(a(1+\cos\theta)\right)^{2} d\theta = \frac{a^{2}}{2} \int_{0}^{2\pi} (1+2\cos\theta+\cos^{2}\theta) d\theta = \frac{a^{2}}{2} \left(\int_{0}^{2\pi} d\theta+2\int_{0}^{2\pi} \cos\theta d\theta+\int_{0}^{2\pi} \cos^{2}\theta d\theta\right) = \frac{a^{2}}{2} \left(\int_{0}^{2\pi} d\theta+2\int_{0}^{2\pi} \cos\theta d\theta+\int_{0}^{2\pi} \cos\theta d\theta+\frac{1}{2}\int_{0}^{2\pi} \cos(2\theta) d\theta\right).$$
The integral involving $\cos\theta$ is 0 as is the integral involving $\cos(2\theta)$ so $\mathbf{Area} = \frac{6\pi a^{2}}{2}$. Now

The integral involving $\cos \theta$ is 0 as is the integral involving $\cos(2\theta)$ so $\mathbf{Area} = \frac{6\pi a}{4}$. Now we turn to the moments.

The moment about the *x*-axis is $\frac{1}{3} \int_{0}^{2\pi} r^3 \sin \theta \, d\theta = \frac{1}{3} \int_{0}^{2\pi} a^3 (1 + \cos \theta)^3 \sin \theta \, d\theta$. Substitute $u = 1 + \cos \theta$, $du = -\sin \theta \, d\theta$. $\int_{0}^{2\pi} a^3 (1 + \cos \theta)^3 \sin \theta \, d\theta = -\int_{2}^{2} a^3 u^3 \, du = 0$. Once can also argue from symmetry: there is as much of the curve above the *x*-axis as below it.

The moment about the *y*-axis is
$$\frac{1}{3} \int_{0}^{2\pi} r^{3} \cos \theta \, d\theta = \frac{1}{3} \int_{0}^{2\pi} a^{3} (1+\cos\theta)^{3} \cos \theta \, d\theta = \frac{a^{3}}{3} \int_{0}^{2\pi} (1+3\cos\theta+3\cos^{2}\theta+\cos^{3}\theta) \cos \theta \, d\theta = \frac{a^{3}}{3} \int_{0}^{2\pi} (\cos\theta+3\cos^{2}\theta+3\cos^{3}\theta+\cos^{4}\theta) \, d\theta =.$$

We can do $\int \cos^{4} d\theta$ by parts as follows. Let $u = \cos^{3}\theta$, $dv = \cos\theta \, d\theta$. Then $du = -3\cos^{2}\theta \sin\theta \, d\theta$ and $v = \sin\theta$. Hence $\int \cos^{4} d\theta = \cos^{3}\theta \sin\theta - \int (\sin\theta(-3\cos^{2}\theta\sin\theta) \, d\theta = \cos^{3}\theta \sin\theta + 3\int \cos^{2}\theta \sin^{2}\theta \, d\theta$. Now write $\sin^{2}\theta = 1 - \cos^{2}\theta$ so $\int \cos^{2}\theta \sin^{2}\theta \, d\theta = \int \cos^{2}\theta \, d\theta - \int \cos^{4}\theta \, d\theta$. Plug back in and solve for $\int \cos^{4}\theta \, d\theta$: $4\int \cos^{4}\theta \, d\theta = \cos^{3}\theta \sin\theta + 3\int \cos^{2}\theta \, d\theta \, d\theta = \frac{\cos^{3}\theta \sin\theta}{4} + \frac{3}{4}\int \cos^{2}\theta \, d\theta$.

A similar Integration by Parts and solving for the integral gives $\int \cos^3 \theta d\theta = \frac{\cos^2 \theta \sin \theta}{3} + \frac{2}{3} \int \cos \theta \, d\theta.$

Hence $\int_{0}^{2\pi} (\cos\theta + 3\cos^{2}\theta + 3\cos^{3}\theta + \cos^{4}\theta) d\theta = \int_{0}^{2\pi} (3\cos\theta + \frac{15}{4}\cos^{2}\theta) d\theta + \cos^{2}\theta \sin\theta \Big|_{0}^{2\pi} + \frac{\cos^{3}\theta \sin\theta}{4} \Big|_{0}^{2\pi}$. Further $\int_{0}^{2\pi} \cos\theta d\theta = 0$ and $\int_{0}^{2\pi} \cos^{2}\theta d\theta = \int_{0}^{2\pi} \frac{1 + \cos(2\theta)}{2} d\theta = \pi$. Hence the **moment about the** y-**axis** $= \frac{a^{3}}{3}\frac{15\pi}{4} = \frac{5\pi a^{3}}{4}$. Therefore, the x coordinate of the center of mass is $\frac{5\pi a^{3}}{4} = \frac{5a}{6}$. The y coordinate of

the center of mass is 0.