1.(5pt) Which formulae below is $\frac{d(\ln u)}{dx}$? (a) $\frac{\ln u}{u}$ (b) $\frac{1}{x}$ (c) $\frac{1}{\frac{du}{dx}}$ (d) $\frac{1}{u}\frac{du}{dx}$ (e) $\frac{1}{x}\frac{du}{dx}$

This is memorization. Either you know that (d) is the answer, or else you remember $\frac{d(\ln x)}{dx} = \frac{1}{x}$ and then use the Chain Rule: $\frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx}$.

2.(5pt) Which formulae below is $\frac{d(\arcsin v)}{dt}$?

$$(a)\frac{v}{\sqrt{v^2-1}} (b)\frac{1}{\sqrt{1-t^2}} (c)\frac{\frac{dv}{dt}}{v\sqrt{v^2-1}} (d)\frac{v\frac{dv}{dt}}{\sqrt{1-v^2}} (e)\frac{\frac{dv}{dt}}{\sqrt{1-v^2}}$$

Again this is memorization. Either you know that (e) is the answer, or else you remember $\frac{d(\arcsin x)}{dx} = \frac{1}{\sqrt{1-x^2}}$ and then use the Chain Rule: $\frac{d(\arcsin v)}{dx} = \frac{1}{\sqrt{1-v^2}} \frac{dv}{dx}$.

3.(20pt) An unknown element is found to be radioactive. By chemical analysis, it is found that 15% of a given sample is lost in a 24 hour period. What is the half-life of this element? (An answer such as $t = \frac{\ln 97}{\ln 78.64}$ is fine.)

Since we have radioactive decay, $y = y_0 e^{-kt}$ where t is the time in days from now. The first condition says y(1) = 0.85y(0), so $e^{-k \cdot 1} = 0.85e^{k \cdot 0}$, or $e^{-k} = 0.85$. The half-life h is given by the equation y(h) = 0.5y(0), so $e^{-k \cdot h} = 0.5$. Hence $-k \cdot h = \ln(0.5)$ so $h = \frac{\ln(0.5)}{-k}$. But $e^{-k} = 0.85$ so $-k = \ln(0.85)$ and hence $h = \frac{\ln(0.5)}{\ln(0.85)}$ days.

If you prefer, you can measure t is hours. Then $y(24) = y_0 e^{-k \cdot 24} = 0.85 y_0 e^{k \cdot 0}$ so $e^{-k \cdot 24} = 0.85$ and hence $-24k = \ln(0.85)$ or $-k = \frac{\ln(0.5)}{24}$. The half-life equation is still y(h) = 0.5y(0) so $h = \frac{\ln(0.5)}{-k}$ and hence $h = \frac{\ln(0.5)}{\ln(0.5)} = 24 \frac{\ln(0.5)}{\ln(0.85)}$ hours.

4.(10pt) Evaluate $\lim_{y \to 0} \frac{y^2}{\cos(3y) - 1} =$

This is a L'Hôpital's Rule problem. Since y^2 is 0 and $\cos(3y) = 1$ when we plug in y = 0, this limit has the form $\frac{0}{0}$. Hence $\lim_{y\to 0} \frac{y^2}{\cos(3y) - 1} = \lim_{y\to 0} \frac{2y}{(-3)\sin(3y)}$. This second limit has the form $\frac{0}{0}$ as well, since 2y and $\sin(3y)$ are both 0 when y = 0 is plugged in. By L'Hôpital's Rule again, $\lim_{y\to 0} \frac{2y}{(-3)\sin(3y)} = \lim_{y\to 0} \frac{2}{(-3)(3)\cos(3y)}$ and this last limit can be evaluated by plugging in y = 0. Since $\cos(3 \cdot 0) = 1$, we get $\frac{2}{(-3)(3)} = -\frac{2}{9}$.

5.(20pt) Evaluate

a)
$$\int \frac{16+9v^2}{16+9v^2}$$

One can proceed in several similar ways: e.g. factor out 16 to get $\int \frac{dv}{16+9v^2} = \frac{1}{16} \int \frac{dv}{1+\frac{9}{16}v^2}.$ Now substitute $w = \frac{3}{4}v \ (dw = \frac{3}{4}dv \ or \ \frac{4}{3}dw = dv)$ so $\frac{1}{16} \int \frac{dv}{1+\frac{9}{16}v^2} = \frac{1}{16} \int \frac{4}{3}\frac{dw}{1+w^2} = \frac{1}{12} \int \frac{dw}{1+w^2} = \frac{1}{12} \int \frac{dw}{1+w^2} = \frac{1}{12} \arctan\left(\frac{3}{4}v\right) + C.$ Another way is to use the formula $\int \frac{dw}{a^2+w^2} = \frac{1}{a}\arctan\left(\frac{w}{a}\right) + C.$ This formula shows $\int \frac{d(3v)}{4^2+(3v)^2} = \frac{1}{4}\arctan\left(\frac{3v}{4}\right) + C$ and we also have $\int \frac{dv}{16+9v^2} = \frac{1}{3} \int \frac{d(3v)}{4^2+(3v)^2}$ so we get the same answer.

 $\mathbf{b}) \int \frac{v dv}{16+9 v^2} =$

This is also a substitution: let $w = 16 + 9v^2$ ($dw = 18v \, dv$) so $dv = \frac{1}{18} \, dw$. Hence $\int \frac{v dv}{16 + 9v^2} = \int \frac{\frac{1}{18} dw}{w} = \frac{1}{18} \int \frac{dw}{w} = \frac{1}{18} \ln |w| + C = \frac{1}{18} \ln |16 + 9v^2| + C$.

6.(15pt) Find the unique function satisfying the two conditions $\frac{dy}{dt} = 4y$ and y(1) = 3.

The first step is to solve the differential equation. This is the growth/decay equation again. You can

remember the formula for the answer, $y = y_0 e^{4t}$, or else derive the formula as follows. From $\frac{dy}{dt} = 4y$, we have $\frac{dy}{y} = 4dt$ so $\int \frac{dy}{y} = \int 4dt$ and hence $\ln |y| = 4t + C$. Solving this equation, $|y| = e^{4t+C} = e^C \cdot e^{4t}$ and hence $y = y_0 e^{4t}$.

Next turn to the initial value part of the problem. From y(1) = 3, we see $y(1) = y_0 e^{4 \cdot 1}$ so $y_0 e^4 = 3$ and $y_0 = \frac{3}{e^4}$ so $y = \frac{3}{e^4}e^{4t}$ or $3e^{4t-4}$.

7.(10pt) Evaluate
$$\int \frac{du}{\sqrt{4u - u^2 - 3}} =$$

First complete the square: $4u - u^2 - 3 = 1 - (u - 2)^2$ so $\int \frac{du}{\sqrt{4u - u^2 - 3}} = \int \frac{du}{\sqrt{1 - (u - 2)^2}}$. Now substitute w = u - 2 (dw = du) so $\int \frac{du}{\sqrt{1 - (u - 2)^2}} = \int \frac{dw}{\sqrt{1 - w^2}} = \arcsin w + C = \arcsin(u - 2) + C$.

8.(15pt)
$$\int_{\ln 2}^{\ln 5} \frac{dy}{\sqrt{e^{2y} - 1}}$$

Substitute $u = e^y$ so $e^{2y} = u^2$. Now $du = e^y dy$ or $\frac{du}{u} = dy$, so $\int_{\ln 2}^{\ln 5} \frac{dy}{\sqrt{e^{2y} - 1}} = \int_2^5 \frac{du}{\sqrt{u^2 - 1}} = \operatorname{arcsec} |u| \Big|_2^5 = \operatorname{arcsec} (5) - \operatorname{arcsec} (2)$. Now evaluate $\operatorname{arcsec} (2) = \pi/3$.

Alternatively, you can factor e^y out of the square root: $\int \frac{dy}{\sqrt{e^{2y}-1}} = \int \frac{dy}{e^y\sqrt{1-e^{-2y}}} = \int \frac{e^{-y}dy}{\sqrt{1-e^{-2y}}}$. Now make the substitution $u = e^{-y}$ (so $du = -e^{-y}dy$); the integral is then $\int_{\frac{1}{2}}^{\frac{1}{5}} \frac{-du}{\sqrt{1-u^2}} = -\arcsin(u)|_{\frac{1}{2}}^{\frac{1}{5}} = \arcsin(1/2) - \arcsin(1/5) = \pi/6 - \arcsin(1/5).$

The original problem was $\int_0^{\ln 5} \frac{dy}{\sqrt{e^{2y} - 1}}$ but as some of you noticed, the integrand blows up at 0. Hence this integral is what is called an "improper integral" and by definition $\int_0^{\ln 5} \frac{dy}{\sqrt{e^{2y} - 1}} = \lim_{t \to 0^+} \int_t^{\ln 5} \frac{dy}{\sqrt{e^{2y} - 1}}$ As above $\lim_{t \to 0^+} \int_t^{\ln 5} \frac{dy}{\sqrt{e^{2y} - 1}} = \lim_{t \to 1^+} \int_t^5 \frac{du}{u\sqrt{u^2 - 1}} = \operatorname{arcsec}(5) - \lim_{t \to 1^+} \operatorname{arcsec}|t| = \operatorname{arcsec}(5) - \operatorname{arcsec}(1) = \operatorname{arcsec}(5).$