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Dec. 2, 1997

1. (5pt) The Maclaurin series for sin(2x2) starts off as: a

(a) 2x2− 4x6

3 + 4x10

15 − . . . (b) 1− 2x4

2! + 2x8

4! − . . . (c) 2x2− 2x6

3! + 2x10

5! − . . .

(d) 1− 2x4 + 2x8

3 − . . . (e) none of the above

Since sin x = x − x3

3! + x5

5! − · · ·, then sin(2x2) = 2x2 − (2x2)3
3! + (2x2)5

5! − · · · = 2x2 −
8x3

6 + 32x10

120 − · · · = 2x2 − 4x3

3 + 4x10

15 − · · ·.

2. (5pt)
∞∑

n=0

3
(n + 2)(n + 3)

= ? d

(a) 0 (b) 1
2 (c) 1 (d) 3

2 (e) diverges

This is a telescoping series: a partial fraction decomposition gives 3
(n + 2)(n + 3) =

3
n + 2 − 3

n + 3, so the sum is (3
2 − 3

3) + (3
3 − 3

4) + (3
4 − 3

5) + · · ·. Everything cancels

except for the first term, 3
2 .

3. (10pt) For each of the following series, does it converge or diverge? If it converges,
identify the sum. Give reasons for your answers.

(a)
∞∑

n=0

(−1)n+1π−n.

We can rewrite the sum as
∑

(−1)(−1)nπ−n = −
∑

(−1
π )n. This sum is a geometric series

with ratio − 1
π ; the ratio has absolute value less than 1, so it converges, and the sum is

−1
1− (− 1

π )
= −π

π + 1. (You can also use the alternating series test to see that it converges,

or the ratio or nth root test to see that it converges absolutely.)

(b)
∞∑

n=1

1√
n

.

This is a p-series with p = 1
2 < 1, so it diverges. (You can also use the integral test to see

this. You can also compare the series to 1
n : 1√

n
> 1

n , and
∑ 1

n diverges.)
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4. (20pt) Determine whether each of the following series converges absolutely, converges
conditionally, or diverges. Give reasons for your answers.

(a)
∞∑

n=0

(−1)n

3n− 2
This series converges conditionally. It is an alternating series (at least when n ≥ 1), the
terms go to zero, and their absolute values are decreasing. So the series converges by the
alternating series test. On the other hand, if one takes absolute values, the resulting series

diverges: compare it to 1
n using the limit comparison test: lim

n→∞

1
3n−2

1
n

=
1
3
. Since

∑ 1
n

diverges, so does
∑ 1

3n− 2 . (You can also use the integral test to see this. You can also

compare the series to 1
3n : 1

3n− 2 > 1
3n , and

∑ 1
3n diverges.)

(b)
∞∑

n=0

(−1)nn

3n3 − 2

This series converges absolutely. Compare it to
∑ 1

n2 : using the limit comparison test,

you get lim
n→∞

n
3n3−2

1
n2

= lim
n→∞

n3

3n3 − 2
=

1
3
. Therefore

∑ n
3n− 2 behaves the same way that∑ 1

n2 does. The latter is a p-series with p = 2, and hence converges. Therefore the former

converges, and therefore the alternating series
∑ (−1)nn

3n− 2 converges absolutely. (You can

also use the direct comparison test: 1
n2 > n

3n3 − 2
for all n ≥ 1; since

∑ 1
n2 converges

and is larger, term-by-term, than
∑ n

3n3 − 2
, then this series converges, too.)

(c)
∞∑

n=1

(
3
n

)n

This series converges absolutely. Use the nth root test: lim
n→∞

[(
3
n

)n]1/n

= lim
n→∞

3
n

= 0.

Since the limit is less than 1, then the series converges. Since all the terms are positive,
it converges absolutely. (You can also use the ratio test, but it’s more complicated. Or

you can use the direct comparison test: when n is at least 10, then
(

3
n

)n

≤
(

3
10

)n

. The

geometric series
∑(

3
10

)n

converges, and hence so does
∑(

3
n

)n

.)

(d)
∞∑

n=0

(−1)nn2

√
n!

This series converges absolutely. Use the ratio test on the absolute values of the terms:

lim
n→∞

(n + 1)2√
(n + 1)!

√
n!

n2 = lim
n→∞

(
n + 1

n

)2 1√
n + 1

= 0. Since this is less than 1, the series of

positive terms converges, so the original series converges absolutely.
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5. (15pt) What is the interval of convergence of
∞∑

n=1

(2x)n

n2 ?

Use the ratio test: lim
n→∞

|2x|n+1

(n + 1)2
n2

|2x|n
= lim

n→∞
|2x|

(
n

n + 1

)2

= |2x|. The series converges

when this is less than 1, which is when |x| < 1
2 , or equivalently, when −1

2 < x < 1
2 . We

deal with the endpoints separately: when we plug x = 1
2 into the series, we get

∑ 1
n2

which converges because it is a p-series with p = 2. When we plug in x = −1
2 , we get∑ (−1)n

n2 , which converges by the absolute convergence test or the alternating series test.

So the interval of convergence is [−1
2 , 1

2 ]: the series converges for all x with −1
2 ≤ x ≤ 1

2 .
(You can also use the nth root test to find the initial interval.)

6. (15pt) Find the Taylor series for f(x) = x2 + ex about x = 1.
We start by computing the derivatives of the function f(x). We have: f ′(x) = 2x + ex,
f ′′(x) = 2 + ex, and f ′′′(x) = ex = f (4)(x) = f (5)(x) = · · ·. Now we plug in the center of
the series: f(1) = 1 + e, f ′(1) = 2 + e, f ′′(1) = 2 + e, and f (n)(1) = e for all n ≥ 3. So the
answer is:

∞∑
n=0

f (n)(1)
n!

(x−1)n = (1+e)+(2+e)(x−1)+
2 + e

2!
(x−1)2 +

e

3!
(x−1)3 +

e

4!
(x−1)4 + · · · .

Alternatively, you can write this as(
1 + 2(x− 1) +

2
2!

(x− 1)2
)

+ e

(
1 + (x− 1) +

1
2!

(x− 1)2 +
1
3!

(x− 1)3 + · · ·
)

.

7. (15pt) Express
∫ 1

0

e−x2
dx as an infinite series. How accurate an estimate do you get

from the first four terms of this series?

First, since ex =
∞∑

n=0

xn

n!
, then e−x2

=
∞∑

n=0

(−x2)n

n!
=

∞∑
n=0

(−1)nx2n

n!
. Therefore

∫
e−x2

dx =

∞∑
n=0

(−1)nx2n+1

(2n + 1)n!
+ c. When we evaluate at 0 and 1, we get

∞∑
n=0

(−1)n

(2n + 1)n!
.

The first four terms of this are 1 − 1
3 · 1! + 1

5 · 2! −
1

7 · 3! . Since this series satisfies the
conditions of the alternating series test (the terms alternate, they decrease in absolute
value, and their limit is zero), the absolute value of the next term measures the error:

1
9 · 4! = 1

9 · 24 = 1
216 .
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8. (15pt) Use the binomial theorem to evaluate lim
x→0

(1 + x2)3/4 − (1 + 3
4x2)

x4 .

The binomial theorem says that (1 + y)3/4 = 1 + 3
4y − 3

32y2 + 5
128x8 − · · ·. Therefore,

(1 + x2)3/4 = 1 + 3
4x2 − 3

32x4 + 5
128x8 − · · ·. So the limit is

lim
x→0

(1 + 3
4x2 − 3

32x4 + 5
128x8 − · · ·)− (1 + 3

4x2)
x4 = lim

x→0

− 3
32x4 + 5

128x8 − · · ·
x4 = − 3

32
.
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