1. (15pt) Find the area inside the 3-leafed rose, $r = \sin(3\theta)$.

 $Area=\frac{1}{2}$ $\overline{2}$ $\int_{0}^{\beta} r^2 d\theta$. From the graph check that the rose is swept out once as θ runs from 0 to π : 0 to $\frac{\pi}{3}$ is the leaf in the first quadrant; $\frac{\pi}{3}$ to $\frac{2\pi}{3}$ is the leaf centered on the negative y–axis; and $\frac{2\pi}{3}$ to π is the leaf in the second quadrant.

Hence **Area** =
$$
\frac{1}{2} \int_0^{\pi} \sin^2(3\theta) d\theta = \frac{1}{2} \int_0^{\pi} \frac{1 - \cos(6\theta)}{2} d\theta = \frac{1}{4} \left(\theta \Big|_0^{\pi} - \frac{1}{6} \sin(6\theta) \Big|_0^{\pi} \right) = \frac{\pi}{4}.
$$

2. (15pt) Find the arclength of the curve $r = \sec \theta$ with $0 \le \theta \le \frac{\pi}{4}$ $\frac{\pi}{4}.$

There are two solutions. The first is to note $r = \sec \theta$ is equivalent to $r \cos \theta = 1$, or $x = 1$, so our graph is a part of the vertical line $x = 1$. The y-coordinate is given by $y = r \sin \theta = \frac{\sin \theta}{\cos \theta}$ $\frac{\sin \theta}{\cos \theta} = \tan \theta$. When $\theta = 0$, $y = 0$ and when $\theta = \frac{\pi}{4}$ $\frac{\pi}{4}$, $y = 1$. Hence the length is 1.

The overwhelming majority of you proceeded as follows. Length= \int^{β} α $\sqrt{r^2 + (r')^2} d\theta.$ $\frac{d}{d\theta}$ = sec θ tan θ ; $r^2 + (r')^2 = \sec^2 \theta + \sec^2 \theta \tan^2 \theta = \sec^2 \theta (1 + \tan^2 \theta) = \sec^2 \theta \sec^2 \theta$. Hence Length= | $\frac{\pi}{2}$ 4 0 √ $\sec^4 \theta \ d\theta =$ $\frac{\pi}{4}$ 4 0 $\sec^2 \theta \, d\theta = \tan \theta$ $\frac{\pi}{2}$ 4 $\frac{4}{0} = 1 - 0 = 1.$

3. (15pt) Find the surface area of the surface obtained by rotating the piece of $r^2 =$ $1+\cos(2\theta)$ in the first quadrant around the x-axis. (The graph is that of the entire curve.)

By studying the graph, see that we need to rotate the part of the curve $r = \sqrt{1 + \cos(2\theta)}$ for θ between 0 and π . **Surface Area** = 2π \int^{β} α $r \sin \theta \sqrt{r^2 + (r')^2} d\theta.$ $\frac{d r}{d \theta} = \frac{-2 \sin(2\theta)}{2 \sqrt{1 + \cos(2\theta)}}$ $\frac{-2\sin(2\theta)}{2\sqrt{1+\cos(2\theta)}}=\frac{-\sin(2\theta)}{\sqrt{1+\cos(2\theta)}}$, so

$$
r^{2} + (r')^{2} = 1 + \cos(2\theta) + \frac{\sin^{2}(2\theta)}{1 + \cos(2\theta)} = \frac{1 + 2\cos(2\theta) + \cos^{2}(2\theta) + \sin^{2}(2\theta)}{1 + \cos(2\theta)} =
$$
\n
$$
\frac{2 + 2\cos(2\theta)}{1 + \cos(2\theta)} = 2.
$$
 Hence Surface Area = $2\pi \int_{0}^{\frac{\pi}{2}} \sqrt{1 + \cos(2\theta)} (\sin \theta) \sqrt{2} d\theta =$ \n
$$
2\pi \int_{0}^{\frac{\pi}{2}} \sqrt{2\cos^{2}\theta} (\sin \theta) \sqrt{2} d\theta = 4\pi \int_{0}^{\frac{\pi}{2}} \cos \theta \sin \theta d\theta = 2\pi \sin^{2}\theta \Big|_{0}^{\frac{\pi}{2}} = 2\pi.
$$
\nA second approach proceeds as follows. Rewrite $r = \sqrt{1 + \cos(2\theta)}$ as $r = \sqrt{2} \cos \theta$ using the half-angle formula. Then $r' = -\sqrt{2} \sin \theta$ so $r^{2} + (r')^{2} = 2$ and Surface Area\n
$$
= 2\pi \int_{0}^{\frac{\pi}{2}} (\sqrt{2} \cos \theta) \sin \theta \sqrt{2} d\theta
$$
 and finish as above.\n4. (5pt) Which function below is the inverse function to $f(x) = e^{2x}$?\n(a) $e^{-x} + \ln |x|$ (b) $e^{-x/2}$ (c) $\sqrt{\ln x}$ (d) $\bullet \frac{1}{2} \ln x$ (e) $\ln(x/2)$ \nSince $f(\frac{1}{2} \ln x) = e^{2\frac{1}{2} \ln x} = e^{\ln x} = x$, $\frac{1}{2} \ln x$ is the inverse function.\n5. (5pt) Which substitution reduces the integral $\int \frac{dx}{\sqrt{4 - x^{2}}}$ to the integral $\int du$?\n(a) $\bullet x = 2 \sin u$ (b) $x = \frac{1}{2} \tan u$ (c) $x = \sin u + \cos u$ (d) $u = 2 \sin x$ (e) $x = \sqrt{2} \cos u$ \nIf $x = 2 \sin u$, $dx =$

8. (5pt) Which function below is the solution to the initial value problem $y' = 3y, y(1) = 1$? (a) $y(x) = \frac{e^3}{34}$ $\frac{e^3}{e^{3x}}$ (b) $\bullet y(t) = \frac{e^{3t}}{e^3}$ e^{3x} (c) $y(s) = e^{3s} - e^3 + 1$ (d) $y(x) = x^3$ (e) $y(t) = e^{3t}$ This is a growth/decay differential equation so $y = Ce^{3t}$. Since $y(1) = 1, C = \frac{1}{2}$ $\frac{1}{e^3}$.

9. (5pt) Indicate which one of the statements below is true. The series $\sum_{n=2}^{\infty} \frac{1}{n^2}$ $n=0$ n^2+3 (a) •absolutely converges (b) conditionally converges (c) diverges Compare to the convergent *p*–series $\sum_{n=1}^{\infty}$ $n=1\frac{11}{2}$ $\frac{1}{n^2}$.

10. (5pt) Indicate which one of the statements below is true. The series $\sum_{n=1}^{\infty}$ $n=1$ $(-1)^n$ $\frac{\sqrt{1}}{\sqrt[3]{n^2+n}}$ (a) absolutely converges (b) •conditionally converges (c) diverges Alternating series. Compare to *p*–series $\sum_{n=1}^{\infty} n = 1$. \overline{n} $\overline{2}$ 3 which diverges. Terms of the alternating series decrease to 0, so converges conditionally.

11. (5pt) Indicate which one of the statements below is true. The series $\sum_{n=1}^{\infty}$ $n=3$ 1 $n \ln n$ (a) absolutely converges (b) conditionally converges (c) •diverges The Integral Test applies and we need to evaluate $\int_{-\infty}^{\infty}$ 2 dx $\frac{dx}{x(\ln x)^{\frac{1}{2}}} = 2(\ln x)^{\frac{1}{2}}$ ∞ $\frac{1}{2}$ √

 $2\lim_{x\to\infty}(\ln x)^{\frac{1}{2}}-2\sqrt{\ln 2}$ which diverges since $\ln x$ goes to ∞ as x does.

12. (5pt) Indicate which one of the statements below is true. The series\n
$$
\sum_{n=0}^{\infty} \frac{2n+1}{(n^2+1)(n^2+2n+2)}
$$

(a) has value 2 (b) •has value 1 (c) has value 4 (d) diverges (e) has value 3 This is a telescoping series since $\frac{2n+1}{(n^2+1)(n^2+2n+2)} = \frac{1}{n^2-1}$ $\frac{1}{n^2+1} - \frac{1}{n^2+2}$ $\frac{1}{n^2+2n+2} = \frac{1}{n^2-1}$ $\frac{1}{n^2+1} \frac{1}{(n+1)^2+1}$. Since $\lim_{n\to\infty}$ 1 $n^2 + 1$ $= 0$, the series sums to $\frac{1}{0^2 + 1}$.

13. (5pt) Which series below is the Taylor series for the function
$$
\ln x
$$
 at 2?\n\n(a) $\sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n}$ \n(b) $\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^{2n}}{(2n)!}$ \n(c) $\bullet \ln 2 + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-2)^n}{n2^n}$ \n(d) $\sum_{n=2}^{\infty} (-1)^{n-1} \frac{(x-2)^{n-3}}{\ln 2}$ \n(e) $\sum_{n=0}^{\infty} \frac{(x-2)^n}{n!}$ \n(f) $\sum_{n=0}^{\infty} (-1)^n \frac{(x-1)^n}{\ln 2}$

(c) is the only series which has the correct constant term.

14. (5pt) The MacLaurin Series for $(1+x^3)^{\frac{1}{3}}$ starts out (a) $1 + \frac{1}{3}x - \frac{1}{9}$ $\frac{1}{9}x^2 + \frac{5}{81}x^3 \cdots$ (b) $\frac{1}{3}x^3 - \frac{1}{9}$ $\frac{1}{9}x^6 + \frac{5}{81}x^9 \cdots$ (c) $\frac{1}{3}x - \frac{1}{9}$ (a) $1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 \cdots$

(b) $\frac{1}{3}x^3 - \frac{1}{9}x^6 + \frac{5}{81}x^9 \cdots$

(c) $\frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 \cdots$

(e) $\bullet 1 + \frac{1}{3}x^3 - \frac{1}{9}x^6 + \frac{5}{81}x^9 \cdots$

(c) $\frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 \cdots$ $\frac{1}{9}x^6 + \frac{5}{81}x^9 \cdots$

Plug into the Binomial Theorem: $(1+x^3)^{\frac{1}{3}} = \sum$ $n=0$ $\begin{pmatrix} \frac{1}{3} \\ n \end{pmatrix}$ \setminus $(x^3)^n = 1 + \frac{1}{2}$ 3 $x^3 +$ 1 $\frac{1}{3}(\frac{1}{3})$ $\frac{1}{3} - 1)$ 2 $x^6 + \cdots =$ $1 +$ 1 3 $x^3 - \frac{1}{2}$ 9 $x^6 + \cdots$ 15. (5pt) The difference $\sum_{n=1}^{\infty}$ $n=1$ $(-1)^{n+1}\frac{n^2}{2n}$ $\frac{n}{2^n}$ – $\sum_{n=1}$ 4 $n=1$ $(-1)^{n+1}\frac{n^2}{2^n}$ $\frac{n}{2^n}$ is (a) **•**positive and less than $\frac{25}{32}$ $\frac{25}{32}$ (b) negative and greater than $-\frac{49}{102}$ 1024 (c) negative and greater than $-\frac{25}{32}$ $\frac{25}{32}$ (d) greater than $-\frac{1}{1024}$ and less than $\frac{1}{1024}$ (e) positive and less than $\frac{49}{1024}$ \sum^{∞} $n=1$ $(-1)^{n+1}\frac{n^2}{2n}$ $\frac{n}{2^n}$ is an alternating series to which the Alternating Series Test applies. Hence the difference is bounded by the absolute value of the 5th term, $\frac{25}{32}$, and is positive. 16. (5pt) The partial fraction decomposition for $\frac{x^5 + 4x^3 - 4x^2 + 2x - 3}{x^2(x^2 + 1)}$ is $x^2(x)$ (a) $x + \frac{3}{2}$ $rac{3}{x^2} + \frac{x-1}{x^2+1}$ $\frac{x-1}{x^2+1}$ (b) $x^2+\frac{2}{x}$ $rac{2}{x} - \frac{5}{x^2}$ $rac{5}{x^2} + \frac{x-1}{x^2+1}$ $\frac{x-1}{x^2+1}$ (c) $x-\frac{3}{x^2}$ $rac{3}{x^2} + \frac{x-1}{x^2+1}$ $\overline{x^2+1}$ (d) $\bullet x + \frac{2}{r}$ $\frac{2}{x} - \frac{3}{x^2}$ $\frac{3}{x^2} + \frac{x-1}{x^2+1}$ $\frac{x-1}{x^2+1}$ (e) $\frac{2}{x} - \frac{5}{x^2}$ $rac{5}{x^2} + \frac{x-1}{x^2+1}$ $\overline{x^2+1}$ By polynomial long division, $\frac{x^5 + 4x^3 - 4x^2 + 2x - 3}{x^2 - 4x + 3}$ $\frac{x^3 - 4x^2 + 2x - 3}{x^2(x^2 + 1)} = x + \frac{3x^3 - 4x^2 + 2x - 3}{x^2(x^2 + 1)}$ $\frac{x^2 + 2x - 3}{x^2(x^2 + 1)}$ and $3x^3 - 4x^2 + 2x - 3$ $\frac{-4x^2+2x-3}{x^2(x^2+1)}=\frac{A}{x}$ $\frac{A}{x} + \frac{B}{x^2}$ $rac{B}{x^2} + \frac{Cx + D}{x^2 + 1}$ $\frac{2x+D}{x^2+1}$. Hence $3x^3-4x^2+2x-3 = Ax(x^2+1)+B(x^2+1)$ 1) + $(Cx+D)x^2$. Plug in $x = 0$, $B = -3$. Hence $Ax(X^2+1) + (Cx+D)x^2 = 3x^3 - x^2 + 2x$ or $A(x^2+1)+(Cx+D)x = 3x^2-x+2$. Plug in $x = 0$, $A = 2$. Hence $(Cx+D)x = x^2-x$ so $Cx + D = x - 1$. 17. (5pt) \int_1^1 0 $xe^x dx =$ (a) $\bullet 1$ (b) 0 (c) 3 (d) 4 (e) 2 By parts: $u = x \, dv = e^x dx$; $du = dx$, $v = e^x$. 0 $xe^x dx = xe^x$ 1 $\frac{1}{0} - \int_0^1$ 0 $e^x dx = xe^x$ 1 $\frac{1}{0}$ $e^x\Big|$ 1 $_0 = (e-0) - (e-1) = 1.$ 18. (5pt) The radius of convergence of \sum^{∞} $n=0$ $1 \cdot 3 \cdots (2n-1)$ $2 \cdot 4 \cdots (2n)$ x^n is (a) ∞ (b) 8 (c) 3 (d) 2 (e) •1 There is a typo - the sum should start at $n = 1$. Compute $\frac{1 \cdot 3 \cdots (2n+1)}{2 \cdot 4 \cdots (2n+2)} x^{n+1}$ $1 \cdot 3 \cdots (2n-1)$ $\frac{(2n-1)}{2 \cdot 4 \cdots (2n)} x^n$ $=\frac{2n+1}{2n+2} \cdot x$. As n goes to ∞ this quantity goes to x, so the radius of Convergence is 1.

19. (5pt) $\frac{d^{3x}}{dx}$ = $(a) x3^{x-1}$ (b) $\ln(3^x)$ (c) \bullet (ln 3)3^x (d) $\frac{3^x}{\ln x}$ (e) 3^x $\frac{d \, 3^x}{dx} = \frac{d \, (e^{\ln 3})^x}{dx}$ $\frac{d e^{\ln 3}x}{dx} = \frac{d e^{x \ln 3}}{dx} = (\ln 3)e^{x \ln 3}.$ 20. (5pt) $\int_{-\infty}^{\infty}$ 0 dx $\frac{dx}{x^2+1} =$ (a) $\frac{\pi}{3}$ (b) $\overline{\bullet}$ $\frac{\pi}{2}$ 2 (c) diverges (d) $\arctan 4$ (e) 0 \int^{∞} 0 dx $\frac{dx}{x^2+1} = \lim_{x \to \infty} \arctan x - \arctan 0 = \frac{\pi}{2}$ 2 − 0. 21. (5pt) \int_0^2 0 dx $x - 1$ = (a) 2 (b) $\ln 3$ (c) $\ln 2$ (d) •diverges The integral is improper because $x - 1$ vanishes at $x = 1$. $\int \frac{dx}{1 + x^2}$ $x - 1$ $=\ln|x-1|+C.$ Since $\lim_{x \to 1^+} \ln |x - 1| = -\infty$, the integral diverges. 22. (5pt) Which of the functions below grows the most slowly? (a) $x^3 - 3x$ $3-3x$ (b) $\frac{x^2}{4}$ $\frac{x^2}{4}$ (c) $x^6 + 3x^5 + 4$ (d) • x ln x (e) ln (e^{x^6} (e) is a fancy way to write the polynomial x^6 . (d) grows faster than x and more slowly than x^2 . 23. (5pt) $\frac{d \operatorname{arcsec}(x^2)}{dx}$ = (a) $\frac{2x}{4}$ $\frac{2x}{1-x^4}$ (b) $\frac{1}{\sqrt{1-x^4}}$ $\frac{1}{1-x^4}$ (c) $\frac{1}{x^2\sqrt{x^4}}$ $\frac{1}{x^2}\sqrt{2x^2}$ x^4-1 (d) $\frac{x^2}{4}$ $rac{x^2}{1-x^4}$ (e) $\bullet \frac{2}{x\sqrt{x^4}}$ \overline{x} √ x^4-1 $\frac{d \operatorname{arcsec}(x)}{dx} = \frac{1}{x\sqrt{x^2}}$ \overline{x} √ x^2-1 so by the Chain Rule, $\frac{d \operatorname{arcsec}(x^2)}{dx} = \frac{2x}{x^2 \sqrt{(x^2)}}$ $x^2\sqrt{(x^2)^2-1}$ 24. (5pt) Which function below is a solution to the differential equation $y' - x^2y = 0$? (a) $y = 3 + e^{\frac{x^3}{3}}$ (b) $y = \frac{3}{2}$ $\frac{3}{2}e^{\frac{x^3}{2}}$ (c) $\bullet y = 2e^{\frac{x^3}{3}}$ (d) $y = 3e^{\frac{x^2}{2}}$ (e) $y = 2 + e^{\frac{x^2}{2}}$ 2 This is a linear equation in standard form. The integrating factor is $v = e$ $\int -x^2 dx$ $= e^{\frac{-x^3}{3}}.$ Hence $\left(e^{\frac{-x^3}{3}}y\right)$ \setminus' $= 0$ so $e^{\frac{-x^3}{3}}y = C$, or $y = Ce^{\frac{x^3}{3}}$. (c) is the only function of this form among the choices.