1. (15pt) Find the area inside the 3-leafed rose, $r = \sin(3\theta)$.

Area= $\frac{1}{2}\int_{\alpha}^{\beta}r^2 d\theta$. From the graph check that the rose is swept out once as θ runs from 0 to π : 0 to $\frac{\pi}{3}$ is the leaf in the first quadrant; $\frac{\pi}{3}$ to $\frac{2\pi}{3}$ is the leaf centered on the negative y-axis; and $\frac{2\pi}{3}$ to π is the leaf in the second quadrant.

Hence
$$\mathbf{Area} = \frac{1}{2} \int_0^{\pi} \sin^2(3\theta) \, d\theta = \frac{1}{2} \int_0^{\pi} \frac{1 - \cos(6\theta)}{2} \, d\theta = \frac{1}{4} \left(\theta \Big|_0^{\pi} - \frac{1}{6} \sin(6\theta) \Big|_0^{\pi} \right) = \frac{\pi}{4}.$$

 $\overline{2. (15\text{pt})}$ Find the arclength of the curve $r = \sec \theta$ with $0 \le \theta \le \frac{\pi}{4}$.

There are two solutions. The first is to note $r = \sec \theta$ is equivalent to $r \cos \theta = 1$, or x = 1, so our graph is a part of the vertical line x = 1. The y-coordinate is given by $y = r \sin \theta = \frac{\sin \theta}{\cos \theta} = \tan \theta$. When $\theta = 0$, y = 0 and when $\theta = \frac{\pi}{4}$, y = 1. Hence the length is 1.

The overwhelming majority of you proceeded as follows. Length= $\int_{\alpha}^{\beta} \sqrt{r^2 + (r')^2} \ d\theta.$ $\frac{d \, r}{d\theta} = \sec \theta \tan \theta; \ r^2 + (r')^2 = \sec^2 \theta + \sec^2 \theta \tan^2 \theta = \sec^\theta (1 + \tan^2 \theta) = \sec^2 \theta \sec^2 \theta.$ Hence $\text{Length} = \int_{0}^{\frac{\pi}{4}} \sqrt{\sec^4 \theta} \ d\theta = \int_{0}^{\frac{\pi}{4}} \sec^2 \theta \ d\theta = \tan \theta \Big|_{0}^{\frac{\pi}{4}} = 1 - 0 = 1.$

3. (15pt) Find the surface area of the surface obtained by rotating the piece of $r^2 = 1 + \cos(2\theta)$ in the first quadrant around the x-axis. (The graph is that of the entire curve.)

By studying the graph, see that we need to rotate the part of the curve $r = \sqrt{1 + \cos(2\theta)}$ for θ between 0 and π . Surface Area $= 2\pi \int_{\alpha}^{\beta} r \sin \theta \sqrt{r^2 + (r')^2} \ d\theta$. $\frac{dr}{d\theta} = \frac{-2\sin(2\theta)}{2\sqrt{1 + \cos(2\theta)}} = \frac{-\sin(2\theta)}{\sqrt{1 + \cos(2\theta)}}, \text{ so}$

$$r^{2} + (r')^{2} = 1 + \cos(2\theta) + \frac{\sin^{2}(2\theta)}{1 + \cos(2\theta)} = \frac{1 + 2\cos(2\theta) + \cos^{2}(2\theta) + \sin^{2}(2\theta)}{1 + \cos(2\theta)} = \frac{2 + 2\cos(2\theta)}{1 + \cos(2\theta)} = 2. \text{ Hence Surface Area} = 2\pi \int_{0}^{\frac{\pi}{2}} \sqrt{1 + \cos(2\theta)} (\sin\theta) \sqrt{2} d\theta = \frac{1 + 2\cos(2\theta)}{1 + \cos(2\theta)} = \frac{1 + 2\cos(2\theta)}{1 + \cos(2\theta)}$$

$$2\pi \int_0^{\frac{\pi}{2}} \sqrt{2\cos^2\theta} \, (\sin\theta) \sqrt{2} \, d\theta = 4\pi \int_0^{\frac{\pi}{2}} \cos\theta \sin\theta \, d\theta = 2\pi \sin^2\theta \Big|_0^{\frac{\pi}{2}} = 2\pi.$$

A second approach proceeds as follows. Rewrite $r = \sqrt{1 + \cos(2\theta)}$ as $r = \sqrt{2} \cos \theta$ using the half-angle formula. Then $r' = -\sqrt{2} \sin \theta$ so $r^2 + (r')^2 = 2$ and **Surface Area** $=2\pi\int^{\frac{\pi}{2}}(\sqrt{2}\cos\theta)\sin\theta\sqrt{2}\,d\theta$ and finish as above.

4. (5pt) Which function below is the inverse function to $f(x) = e^{2x}$?

(a)
$$e^{-x} + \ln|x|$$
 (b) $e^{-x/2}$

(b)
$$e^{-x/2}$$

(c)
$$\sqrt{\ln x}$$

(d)
$$\bullet \frac{1}{2} \ln x$$

(e)
$$\ln(x/2)$$

Since $f(\frac{1}{2}\ln x) = e^{2\cdot\frac{1}{2}\ln x} = e^{\ln x} = x$, $\frac{1}{2}\ln x$ is the inverse function.

5. (5pt) Which substitution reduces the integral $\int \frac{dx}{\sqrt{4-x^2}}$ to the integral $\int du$?

(a) $\bullet x = 2\sin u$ (b) $x = \frac{1}{2}\tan u$ (c) $x = \sin u + \cos u$ (d) $u = 2\sin x$ (e) $x = \sqrt{2}\cos u$ If $x = 2\sin u$, $dx = 2\cos u \, du$ and $\sqrt{4 - x^2} = \sqrt{4 - 4\sin^2 u} = 2\sqrt{\cos^2 u} = 2\cos u$, so $\int \frac{dx}{\sqrt{4 - x^2}} = \int \frac{2\cos u \, du}{2\cos u}$.

6. (5pt) Use Integration by Parts to show $\int_0^{\frac{\pi}{2}} \cos^{10} x \, dx$ equals one of the numbers below.

(a) $\frac{\pi}{2}$ (b) $(-10) \int_{0}^{\frac{\pi}{2}} \cos^{9} x \sin x \, dx$ (c) $\bullet \frac{9}{10} \int_{0}^{\frac{\pi}{2}} \cos^{8} x \, dx$ (d) 0 (e) $\int_{0}^{\frac{\pi}{2}} \cos^{8} x \, dx$ $u = \cos^9 x \ dv = \cos x \ dx$ so $du = -9\cos^8 x \sin x \ dx$, $v = \sin x$ and $\int_{0}^{\frac{\pi}{2}} \cos^{10} x \ dx = \cos^9 x \ dx$ $\cos^9 x \sin x \Big|_0^{\frac{\pi}{2}} + 9 \int_0^{\frac{\pi}{2}} \cos^8 x \sin^2 x \ dx = 9 \int_0^{\frac{\pi}{2}} \cos^8 x (1 - \cos^2 x) dx = 9 \int_0^{\frac{\pi}{2}} \cos^8 x \ dx - \cos^8 x (1 - \cos^2 x) dx = 9 \int_0^{\frac{\pi}{2}} \cos^8 x \ dx - \cos^8 x (1 - \cos^2 x) dx = 9 \int_0^{\frac{\pi}{2}} \cos^8 x \ dx - \cos^8 x (1 - \cos^2 x) dx = 9 \int_0^{\frac{\pi}{2}} \cos^8 x \ dx - \cos^8 x (1 - \cos^2 x) dx = 9 \int_0^{\frac{\pi}{2}} \cos^8 x \ dx - \cos^8 x (1 - \cos^2 x) dx = 9 \int_0^{\frac{\pi}{2}} \cos^8 x \ dx - \cos^8 x (1 - \cos^2 x) dx = 9 \int_0^{\frac{\pi}{2}} \cos^8 x \ dx - \cos^8 x \ dx = 9 \int_0^{\frac{\pi}{2}} \cos^8 x \ dx - \cos^8 x \ dx = 9 \int_0^{\frac{\pi}{2}} \cos^8 x \ dx - \cos^8 x \ dx = 9 \int_0^{\frac{\pi}{2}} \cos^8 x \ dx - \cos^8 x \ dx = 9 \int_0^{\frac{\pi}{2}} \cos^8 x \ dx - \cos^8 x \ dx = 9 \int_0^{\frac{\pi}{2}} \cos^8 x \ dx - \cos^8 x \ dx = 9 \int_0^{\frac{\pi}{2}} \cos^8 x \ dx = 9 \int_0^{\frac{\pi}{2}}$ $9 \int_{0}^{\frac{\pi}{2}} \cos^{10} x \, dx$. Now solve for $\int_{0}^{\frac{\pi}{2}} \cos^{10} x \, dx$.

7. (5pt) The value of $\lim_{t\to\infty} t \cdot \sin\left(\frac{1}{2t}\right) =$

(d)
$$\frac{1}{4}$$

(e)
$$\bullet \frac{1}{2}$$

By L'Hôpital's Rule, $\lim_{t\to\infty}t\cdot\sin\left(\frac{1}{2t}\right)=\lim_{t\to\infty}\frac{\sin\left(\frac{1}{2t}\right)}{\frac{1}{t}}=\lim_{t\to\infty}\frac{\cos\left(\frac{1}{2t}\right)\frac{1}{2}\frac{-1}{t^2}}{\frac{-1}{2}}=$

$$\frac{1}{2}\lim_{t\to\infty}\cos\biggl(\frac{1}{2t}\biggr)=\frac{1}{2}.$$

8. (5pt) Which function below is the solution to the initial value problem y' = 3y, y(1) = 1?

(a)
$$y(x) = \frac{e^3}{e^{3x}}$$
 (b) $\bullet y(t) = \frac{e^{3t}}{e^3}$ (c) $y(s) = e^{3s} - e^3 + 1$ (d) $y(x) = x^3$ (e) $y(t) = e^{3t}$

This is a growth/decay differential equation so $y = Ce^{3t}$. Since y(1) = 1, $C = \frac{1}{e^3}$.

9. (5pt) Indicate which one of the statements below is true. The series $\sum_{n=1}^{\infty} \frac{1}{n^2+3}$

(a) •absolutely converges (b) conditionally converges (c) diverges

Compare to the convergent p-series $\sum n = 1\frac{11}{n^2}$.

10. (5pt) Indicate which one of the statements below is true. The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n^2 + n}}$ (a) absolutely converges

(b) •conditionally converges (c) diverges (a) absolutely converges

Alternating series. Compare to p-series $\sum n = 1 \frac{1}{2}$ which diverges. Terms of the alternating series decrease to 0, so converges conditionally.

11. (5pt) Indicate which one of the statements below is true. The series $\sum_{n=3}^{\infty} \frac{1}{n \ln n}$

(a) absolutely converges

(b) conditionally converges

The Integral Test applies and we need to evaluate $\int_2^\infty \frac{dx}{x(\ln x)^{\frac{1}{2}}} = 2(\ln x)^{\frac{1}{2}}\Big|_2^\infty =$

 $2 \lim_{x \to \infty} (\ln x)^{\frac{1}{2}} - 2\sqrt{\ln 2}$ which diverges since $\ln x$ goes to ∞ as x does.

12. (5pt) Indicate which one of the statements below is true. The series

$$\sum_{n=0}^{\infty} \frac{2n+1}{(n^2+1)(n^2+2n+2)}$$

(a) has value 2 (b) •has value 1 (c) has value 4 (d) diverges (e) has value 3 This is a telescoping series since $\frac{2n+1}{(n^2+1)(n^2+2n+2)} = \frac{1}{n^2+1} - \frac{1}{n^2+2n+2} = \frac{1}{n^2+1} - \frac{1}{n^2+2n+2}$ $\frac{1}{(n+1)^2+1}$. Since $\lim_{n\to\infty}\frac{1}{n^2+1}=0$, the series sums to $\frac{1}{0^2+1}$.

$$\frac{(n+1)+1}{13. \text{ (5pt) Which series below is the Taylor series for the function } \ln x \text{ at } 2?}{13. \text{ (5pt) Which series below is the Taylor series for the function } \ln x \text{ at } 2?} \\
\text{(a) } \sum_{n=1}^{\infty} (-1)^n \frac{x^n}{n} \qquad \text{(b) } \sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^{2n}}{(2n)!} \qquad \text{(c) } \bullet \ln 2 + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{(x-2)^n}{n2^n} \\
\text{(d) } \sum_{n=2}^{\infty} (-1)^{n-1} \frac{(x-2)^{n-3}}{\ln 2} \qquad \text{(e) } \sum_{n=0}^{\infty} \frac{(x-2)^n}{n!}$$

(e) $\sum_{n=0}^{\infty} \frac{(x-2)^n}{n!}$

(c) is the only series which has the correct constant term.

14. (5pt) The MacLaurin Series for $(1+x^3)^{\frac{1}{3}}$ starts out

(a)
$$1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 \cdots$$
 (b) $\frac{1}{3}x^3 - \frac{1}{9}x^6 + \frac{5}{81}x^9 \cdots$ (c) $\frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 \cdots$ (d) $\sqrt[3]{1+x^3} + \cdots$ (e) $\bullet 1 + \frac{1}{3}x^3 - \frac{1}{9}x^6 + \frac{5}{81}x^9 \cdots$

(d)
$$\sqrt[3]{1+x^3} + \cdots$$
 (e) $\bullet 1 + \frac{1}{3}x^3 - \frac{1}{9}x^6 + \frac{5}{81}x^9 + \cdots$

Plug into the Binomial Theorem:
$$(1+x^3)^{\frac{1}{3}} = \sum_{n=0}^{\infty} {1 \choose n} (x^3)^n = 1 + \frac{1}{3}x^3 + \frac{\frac{1}{3}(\frac{1}{3}-1)}{2}x^6 + \cdots = 1 + \frac{1}{3}x^3 - \frac{1}{9}x^6 + \cdots$$

15. (5pt) The difference
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{2^n} - \sum_{n=1}^{4} (-1)^{n+1} \frac{n^2}{2^n}$$
 is

(a) \bullet positive and less than $\frac{25}{32}$

(b) negative and greater than $-\frac{49}{1024}$ (d) greater than $-\frac{1}{1024}$ and less than $\frac{1}{1024}$ (c) negative and greater than $-\frac{25}{32}$

(e) positive and less than $\frac{49}{1024}$

 $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{n^2}{2^n}$ is an alternating series to which the Alternating Series Test applies. Hence the difference is bounded by the absolute value of the 5th term, $\frac{25}{32}$, and is positive.

16. (5pt) The partial fraction decomposition for
$$\frac{x^5 + 4x^3 - 4x^2 + 2x - 3}{x^2(x^2 + 1)}$$
 is

(a) $x + \frac{3}{x^2} + \frac{x - 1}{x^2 + 1}$ (b) $x^2 + \frac{2}{x} - \frac{5}{x^2} + \frac{x - 1}{x^2 + 1}$ (c) $x - \frac{3}{x^2} + \frac{x - 1}{x^2 + 1}$ (d) $\bullet x + \frac{2}{x} - \frac{3}{x^2} + \frac{x - 1}{x^2 + 1}$ (e) $\frac{2}{x} - \frac{5}{x^2} + \frac{x - 1}{x^2 + 1}$

By polynomial long division, $\frac{x^5 + 4x^3 - 4x^2 + 2x - 3}{x^2(x^2 + 1)} = x + \frac{3x^3 - 4x^2 + 2x - 3}{x^2(x^2 + 1)}$ and

$$\frac{3x^3 - 4x^2 + 2x - 3}{x^2(x^2 + 1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx + D}{x^2 + 1}. \text{ Hence } 3x^3 - 4x^2 + 2x - 3 = Ax(x^2 + 1) + B(x^2 + 1) + B(x$$

1) + $(Cx + D)x^2$. Plug in x = 0, B = -3. Hence $Ax(X^2 + 1) + (Cx + D)x^2 = 3x^3 - x^2 + 2x$ or $A(x^2 + 1) + (Cx + D)x = 3x^2 - x + 2$. Plug in x = 0, A = 2. Hence $(Cx + D)x = x^2 - x$ so Cx + D = x - 1.

17. (5pt)
$$\int_0^1 xe^x dx =$$
(a) •1 (b) 0 (c) 3 (d) 4 (e) 2

By parts: $u = x \ dv = e^x dx$; $du = dx$, $v = e^x$. $\int_0^1 xe^x dx = xe^x \Big|_0^1 - \int_0^1 e^x dx = xe^x \Big|_0^1 - e^x \Big|_0^1 = (e - 0) - (e - 1) = 1$.

18. (5pt) The radius of convergence of $\sum_{n=0}^{\infty} \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n)} x^n$ is

(b) 8 (e) •1

There is a typo - the sum should start at n = 1. Compute

$$\frac{\frac{1\cdot 3\cdots (2n+1)}{2\cdot 4\cdots (2n+2)}x^{n+1}}{\frac{1\cdot 3\cdots (2n-1)}{2\cdot 4\cdots (2n)}x^n} = \frac{2n+1}{2n+2}\cdot x. \text{ As } n \text{ goes to } \infty \text{ this quantity goes to } x, \text{ so the radius of Convergence is } 1.$$

 $19. (5pt) \frac{d 3^x}{dx} =$

- (b) $\ln(3^x)$
- (d) $\frac{3^x}{\ln 3}$
- (e) 3^{x}

 $\frac{d \, 3^x}{dx} = \frac{d \, (e^{\ln 3})^x}{dx} = \frac{d \, e^{x \ln 3}}{dx} = (\ln 3)e^{x \ln 3}.$

20. (5pt) $\int_0^\infty \frac{dx}{x^2 + 1} =$

- (a) $\frac{\pi}{3}$
- (c) diverges
- (d) arctan 4
- (e) 0

 $\int_0^\infty \frac{dx}{x^2 + 1} = \lim_{x \to \infty} \arctan x - \arctan 0 = \frac{\pi}{2} - 0.$

21. (5pt) $\int_{0}^{2} \frac{dx}{x-1} =$

- (c) ln 2
- (d) •diverges

The integral is improper because x-1 vanishes at x=1. $\int \frac{dx}{x-1} = \ln|x-1| + C$. Since $\lim_{x\to 1^+} \ln|x-1| = -\infty$, the integral diverges.

22. (5pt) Which of the functions below grows the most slowly?

- (b) $\frac{x^2}{4}$ (c) $x^6 + 3x^5 + 4$ (d) $\bullet x \ln x$
- (e) $\ln\left(e^{x^6}\right)$

(e) is a fancy way to write the polynomial x^6 . (d) grows faster than x and more slowly than x^2 .

 $23. (5pt) \frac{d \operatorname{arcsec}(x^2)}{dx} = (a) \frac{2x}{\sqrt{1-x^4}} \quad (b) \frac{1}{\sqrt{1-x^4}} \quad (c) \frac{1}{x^2\sqrt{x^4-1}} \quad (d) \frac{x^2}{\sqrt{1-x^4}} \quad (e) \bullet \frac{2}{x\sqrt{x^4-1}}$

 $\frac{d \operatorname{arcsec}(x)}{dx} = \frac{1}{x\sqrt{x^2 - 1}} \text{ so by the Chain Rule, } \frac{d \operatorname{arcsec}(x^2)}{dx} = \frac{2x}{x^2\sqrt{(x^2)^2 - 1}}$

24. (5pt) Which function below is a solution to the differential equation $y' - x^2y = 0$? (a) $y = 3 + e^{\frac{x^3}{3}}$ (b) $y = \frac{3}{2}e^{\frac{x^3}{2}}$ (c) $\bullet y = 2e^{\frac{x^3}{3}}$ (d) $y = 3e^{\frac{x^2}{2}}$ (e) $y = 2 + e^{\frac{x^2}{2}}$

This is a linear equation in standard form. The integrating factor is $v = e^{\int -x^2 dx} = e^{\frac{-x^3}{3}}$. Hence $\left(e^{\frac{-x^3}{3}}y\right)'=0$ so $e^{\frac{-x^3}{3}}y=C$, or $y=Ce^{\frac{x^3}{3}}$. (c) is the only function of this form

among the choices.