## Extra credit homework 7, due November 3

I've included solutions for each part.
Let n be a non-negative integer. The $n$th Chebyshev polynomial $T_{n}(x)$ is defined to be

$$
T_{n}(x)=\cos (n \arccos x) .
$$

(a) What are the domain and range of this function?

Solution: Since $T_{n}(x)$ is the cosine of something, then its range is $[-1,1]$. Since you need to take the arccosine of $x$ to define $T_{n}(x)$, then the only allowed values for $x$ are $[-1,1]$, so this is the domain as well.
(b) Find simpler forms for $T_{0}(x), T_{1}(x), T_{2}(x)$, and $T_{3}(x)$.

Solution: I need some trig identities:
(1) $\cos (y+z)=\cos y \cos z-\sin y \sin z$
(2) $\cos (2 y)=2 \cos ^{2} y-1$
(3) $\sin (y+z)=\sin y \cos z+\sin z \cos y$
(4) $\sin (2 y)=2 \sin y \cos y$
(5) $\sin y \sin z=1 / 2(\cos (y-z)-\cos (y+z))$
(6) $\sin y \cos z=1 / 2(\sin (y-z)+\sin (y+z))$

So we get:

$$
\begin{aligned}
T_{0}(x) & =\cos (0)=1, \\
T_{1}(x) & =\cos (\arccos x)=x, \\
T_{2}(x) & =\cos (2 \arccos x)=2 \cos ^{2}(\arccos x)-1=2 x^{2}-1, \\
T_{3}(x) & =\cos (3 \arccos x) \\
& =\cos (\arccos x) \cos (2 \arccos x)-\sin (\arccos x) \sin (2 \arccos x) \\
& =x\left(2 x^{2}-1\right)-\sin (\arccos x) 2 \sin (\arccos x) \cos (\arccos x) \\
& =2 x^{3}-x-2 \sin ^{2}(\arccos x) \cos (\arccos x) \\
& =2 x^{3}-x-2\left(1-\cos ^{2}(\arccos x)\right) \cos (\arccos x) \\
& =2 x^{3}-x-2\left(1-x^{2}\right) x \\
& =4 x^{3}-3 x .
\end{aligned}
$$

(c) Show that, when $n$ is at least 1 , then

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) .
$$

Solution: Let $\theta=\arccos x$.

$$
\begin{aligned}
& T_{n+1}(x)=\cos ((n+1) \theta) \\
&=\cos (\theta+n \theta) \\
&=\cos \theta \cos n \theta-\sin \theta \sin n \theta \\
&\quad \quad \quad \quad \text { using trig identity } 1) \\
&=x T_{n}(x)-\frac{1}{2}(\cos ((n-1) \theta)-\cos ((n+1) \theta) \\
&\quad \quad \quad \quad \text { using trig identity } 5) \\
&=x T_{n}(x)-\frac{1}{2}\left(T_{n-1}(x)-T_{n+1}(x)\right) \\
&=x T_{n}(x)-\frac{1}{2} T_{n-1}(x)+\frac{1}{2} T_{n+1}(x) .
\end{aligned}
$$

Now solve for $T_{n+1}(x)$.
(d) Use part (c) to show that $T_{n}(x)$ is a polynomial of degree $n$.

Solution: Well, by part (b), we know that this is correct when $n$ is $0,1,2$, or 3 . If we know that $T_{n}(x)$ is a polynomial of degree $n$, and if $T_{n-1}(x)$ is a polynomial of degree $n-1$, then by part (c), we can see that $T_{n+1}(x)$ is a polynomial of degree $n+1$. Starting with $n=3$, we see that $T_{4}(x)$ is a polynomial of degree $4, T_{5}(x)$ is a polynomial of degree 5 , etc. (By "etc.", I really mean that you should prove this by induction.)
(e) Use (b) and (c) to express $T_{4}, T_{5}$, and $T_{6}$ as polynomials.

Solution: To get $T_{4}$, we apply (c) with $n=3$ :

$$
\begin{aligned}
T_{4}(x) & =2 x T_{3}(x)-T_{2}(x) \\
& =2 x\left(4 x^{3}-3 x\right)-\left(2 x^{2}-1\right) \\
& =8 x^{4}-8 x^{2}-1 .
\end{aligned}
$$

Similarly,

$$
\begin{gathered}
T_{5}(x)=16 x^{5}-20 x^{3}+5 x \\
T_{6}(x)=32 x^{6}-48 x^{4}+18 x^{2}-1 .
\end{gathered}
$$

(f) What are the zeros of $T_{n}$ ? Where are its local maxima and minima?

Solution: $T_{n}(x)=\cos (n \arccos x)$, and $\cos (\theta)=0$ when $\theta= \pm \pi / 2$, $\pm 3 \pi / 2, \pm 5 \pi / 2, \ldots$. So $T_{n}(x)=0$ when $n \arccos x= \pm \pi / 2, \pm 3 \pi / 2$, $\pm 5 \pi / 2, \ldots$. In other words, $T_{n}(x)=0$ when

$$
\begin{aligned}
& \arccos x= \pm \pi / 2 n, \pm 3 \pi / 2 n, \pm 5 \pi / 2 n, \ldots, \\
& \quad x=\cos (\pi / 2 n), \cos (3 \pi / 2 n), \cos (5 \pi / 2 n), \ldots
\end{aligned}
$$

Since $T_{n}(x)$ is a polynomial of degree $n$, then it should only have $n$ zeros; in fact, the terms in my list of zeros start to repeat after a while, so the zeros are actually:

$$
x=\cos (\pi / 2 n), \cos (3 \pi / 2 n), \cos (5 \pi / 2 n), \ldots, \cos ((2 n-1) \pi / 2 n) .
$$

To find the local maxima and minima, we differentiate $T_{n}(x)$ and set the derivative equal to zero:

$$
T_{n}^{\prime}(x)=\frac{n \sin (n \arccos x)}{\sqrt{1-x^{2}}}=0 .
$$

This is zero only when $\sin (n \arccos x)=0$, which happens when

$$
\begin{gathered}
n \arccos x=0, \pi, 2 \pi, 3 \pi, \ldots, \quad \text { or } \\
\arccos x=0, \frac{\pi}{n}, \frac{2 \pi}{n}, \frac{3 \pi}{n} \ldots, \quad \text { or } \\
x=\cos (0)=1, \cos \left(\frac{\pi}{n}\right), \cos \left(\frac{2 \pi}{n}\right), \ldots, \cos \left(\frac{(n-1) \pi}{n}\right), \cos \left(\frac{n \pi}{n}\right)=-1 .
\end{gathered}
$$

(g) What is the integral of $T_{n}(x)$ with respect to $x$, as $x$ goes from -1 to 1 ?

Solution: Let $u=\arccos x$, so $\cos u=x$, so $-\sin u d u=d x$.

$$
\begin{aligned}
\int_{-1}^{1} \cos (n \arccos x) d x & =-\int_{\pi}^{0} \cos (n u) \sin u d u \\
& =\frac{1}{2} \int_{0}^{\pi}(\sin ((1-n) u)+\sin ((1+n) u)) d u
\end{aligned}
$$

(by trig identity 6)
$=\frac{1}{2}\left(\frac{1}{n-1} \cos ((n-1) u)-\frac{1}{n+1} \cos ((n+1) u)\right)_{0}^{\pi}$
$= \begin{cases}\frac{1}{2}\left(-\frac{2}{n-1}+\frac{2}{n+1}\right), & n \text { even }, \\ 0, & n \text { odd }\end{cases}$
$= \begin{cases}-\frac{2}{n^{2}-1}, & n \text { even }, \\ 0, & n \text { odd. }\end{cases}$
(h) You can define Chebyshev polynomials $T_{a}$ for any number $a$, not just a non-negative integer. What can you tell me about $T_{a}$ in general? What about $T_{a}$ for specific values of $a$ (for instance, $a=\frac{1}{2}$ or $a=\frac{1}{3}$ )?

Solution: This is an open-ended question; I wasn't looking for anything in particular. For example, though, $T_{\frac{1}{2}}(x)=\cos \left(\frac{1}{2} \arccos x\right)$, and you might try to simplify that using a half-angle formula.
(i) What are these Chebyshev polynomials good for, anyway?

Solution: If you want to know, then go to the library and do some research. When you get to the library, you may need to know how to spell Chebyshev:

For what it's worth, "Chebyshev" is sometimes transliterated as "Tschebyscheff" or "Chebysev" or in various other ways. See The Thread by Philip Davis for more information (on the transliteration problem).

