Extra credit homework 13, due December 4

I've included solutions for each part.
Consider the function $f(x)$, defined to be

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & \text { when } x \neq 0 \\ 0 & \text { when } x=0\end{cases}
$$

(a) Show that $f^{\prime}(0)=0$.

Solution: To compute $f^{\prime}(0)$, you need to use the definition of derivative:

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{-1 / h^{2}}-0}{h} \\
& =\lim _{h \rightarrow 0} \frac{e^{-1 / h^{2}}}{h} \\
& =\lim _{h \rightarrow 0} \frac{1 / h}{e^{1 / h^{2}}} .
\end{aligned}
$$

(Technical point: in this limit, we can assume that h is never 0 , which is why I can write $f(h)=e^{-1 / h^{2}}$.) Now use L'Hôpital's rule:

$$
\begin{aligned}
& =\lim _{h \rightarrow 0} \frac{-1 / h^{2}}{-2 / h^{3} e^{1 / h^{2}}} \\
& =\lim _{h \rightarrow 0} \frac{h}{2 e^{1 / h^{2}}} \\
& =0
\end{aligned}
$$

(This last limit is zero because the numerator approaches zero, while the denominator approaches ∞.)
(b) Show that $f^{\prime \prime}(0)=0$.

Solution: This is similar. First, we need to compute $f^{\prime}(x)$ when $x \neq 0$: we just apply the chain rule to $e^{-1 / x^{2}}=e^{-x^{-2}}: f^{\prime}(x)=\frac{2}{x^{3}} e^{-1 / x^{2}}$.

So:

$$
\begin{aligned}
f^{\prime \prime}(0) & =\lim _{h \rightarrow 0} \frac{f^{\prime}(h)-f^{\prime}(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{2}{h^{3}} e^{-1 / h^{2}}-0}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 e^{-1 / h^{2}}}{h^{4}} \\
& =\lim _{h \rightarrow 0} \frac{2 h^{-4}}{e^{1 / h^{2}}} \\
& =\lim _{h \rightarrow 0} \frac{-8 h^{-5}}{-2 h^{-3} e^{1 / h^{2}}} \quad \text { (L'Hôpital) } \\
& =\lim _{h \rightarrow 0} \frac{4 h^{-2}}{e^{1 / h^{2}}} \\
& =\lim _{h \rightarrow 0} \frac{-8 h^{-3}}{-2 h^{-3} e^{1 / h^{2}}} \quad \text { (L'Hôpital) } \\
& =\lim _{h \rightarrow 0} \frac{4}{e^{1 / h^{2}}} \\
& =0 .
\end{aligned}
$$

(c) Show that $f^{(n)}(0)=0$ for as many values of n as you can. Ideally, explain why this is zero for all n.

Solution: I'm not going to give the details. One approach would be to show that

$$
\lim _{h \rightarrow 0} \frac{e^{-1 / h^{2}}}{h^{k}}=0
$$

for any positive integer k, and then show that $f^{(n)}(0)$ is computed as a sum of such limits.

