Given the infinite series 1.

(1)
$$\sum_{n=1}^{\infty} \frac{3 - \cos n}{n}$$

(2)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$$

(1)
$$\sum_{n=1}^{\infty} \frac{3-\cos n}{n}$$
 (2) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2+1}$ (3) $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{2n+1}$,

- (A) (1) diverges, (2) diverges, (3) diverges
- (B) (1) diverges, (2) converges, (3) diverges
- (C) (1) converges, (2) diverges, (3) diverges
- (D) (1) diverges, (2) diverges, (3) converges
- (E) (1) converges, (2) converges, (3) diverges

2. When the Ratio Test is applied to the two infinite series

(1)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}$$
 (2) $\sum_{n=1}^{\infty} \frac{n!}{3^n}$,

(2)
$$\sum_{n=1}^{\infty} \frac{n!}{3^n}$$

the information it provides is

- (A) (2) diverges, no information on (1)
- (B) (1) diverges, (2) converges
- (C) (1) and (2) both converge
- (D) (1) diverges, no information on (2)
- (E) (1) converges, (2) diverges

(A)
$$\sum_{n=1}^{\infty} \frac{3-(-1)^n}{n^2+3}$$

(B)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 3}$$
 (C) $\sum_{n=1}^{\infty} \frac{3}{n+3}$

(C)
$$\sum_{n=1}^{\infty} \frac{3}{n+3}$$

(D)
$$\sum_{n=1}^{\infty} \frac{3 - (-1)^n}{n+3}$$

(E)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n+3}$$

Given the infinite series 4.

(1)
$$\sum_{n=1}^{\infty} \sqrt{\frac{n^2+1}{2n^5-n^3}}$$
 (2) $\sum_{n=1}^{\infty} \frac{n^3}{3^n}$,

(2)
$$\sum_{n=1}^{\infty} \frac{n^3}{3^n}$$

- (A) The n-th Term Test shows that (1) diverges and the Limit Comparison Test shows that (2) diverges
- (B) The Ratio Test shows that (1) converges and the n-th Term Test shows that (2) diverges
- (C) The Ratio Test shows that (1) diverges, and the Comparison Test shows that (2) converges
- (D) The Comparison Test shows that (1) diverges, and the n-th Root Test shows that (2) converges
- (E) The Limit Comparison Test shows that (1) converges, and the Ratio Test shows that (2) converges

- Let $\sum a_n$, $\sum b_n$ be two infinite series. Which one of the following 5. statements must be true?
 - (A) If $a_n \geq \ b_n \ \geq 0$ for all n, and $\sum b_n$ diverges, then $\sum a_n$ diverges
 - (B) If $a_n \geq b_n \geq 0$ for all n, and $\sum b_n$ converges, then $\sum a_n$ converges
 - (C) If $\sum a_n$ is an alternating series which converges, then $\sum \ a_n$ converges absolutely
 - (D) If $\sum a_n$ $\,$ is an alternating series which converges, then $\sum a_n$ $\,$ converges conditionally
 - (E) If $\lim_{n \to \infty} \frac{a_n}{b_n} = r$, where 0 < r < 1, then $\sum a_n$ converges

- $\sum_{n=1}^{\infty} \frac{n^2 x^n}{(n+1)2^n}$ is The radius of convergence of the series 6.
 - (A) $\frac{1}{2}$ (B) ∞ (C) 2 (D) 1 (E) 0

- The degree 6 term of the Maclaurin series for $e^{-(x^2)}$ is 7.

- (A) $\frac{1}{6!} x^6$ (B) $-x^6$ (C) $-\frac{1}{6} x^6$ (D) $-\frac{1}{6!} x^6$ (E) $\frac{1}{6} x^6$

- The 4th order Taylor polynomial for $f(x) = cos^2x$ at a = 0 is 8.

 - (A) $1 x^2 + \frac{1}{4} x^4$ (B) $1 x^2 + \frac{1}{12} x^4$ (C) $1 2x^2 + 3x^4$ (D) $1 x^2 + \frac{1}{3} x^4$ (E) $1 + \frac{1}{4} x^4$

9.
$$\sum_{n=1}^{\infty} \frac{\left(-\frac{1}{2}\right)^n}{n} =$$

(A) $e^{-\frac{1}{2}}$

- (B) diverges (C) In 2 In 3

(D) $tan^{-1}\left(\frac{3}{2}\right)$

(E) $\sin\left(\frac{1}{2}\right)$

- The coefficient of x^3 in the Maclaurin series for $\sqrt{(1+x)^3}$ is 10.

- (A) $\frac{1}{2}$ (B) $\frac{1}{8}$ (C) $-\frac{1}{8}$ (D) $-\frac{1}{16}$ (E) $\frac{3}{32}$

- The approximate value of $(1.2)^{3/2}$ obtained by using the 2nd order Taylor 11. polynomial for $f(x) = x^{3/2}$ at a = 1 is

- (A) 1.315 (B) 1.33 (C) 1.215 (D) 1.205 (E) 1.425

- According to Taylor's theorem, the size of the error in the approximation to 12. $(1.2)^{3/2}$ referred to in question 11 is equal to
 - (A) $\frac{1}{16}$ c^{3/2}, where 1 < c < 1.2
 - (B) $\frac{1}{2000}$ c³, where 0 < c < 0.2
 - (C) $\frac{3}{1000 \text{ c}^{3/2}}$, where 1 < c < 1.2
 - (D) $\frac{1}{16}$ c³, where 0 < c < 0.2
 - (E) $\frac{1}{2000 \text{ c}^{3/2}}$, where 1 < c < 1.2

$$\int_{0}^{1} \sin(x^2) dx =$$

(A)
$$\frac{1}{2} - \frac{1}{6(3!)} + \frac{1}{10(5!)} - \frac{1}{14(7!)} + \dots$$

(B)
$$\frac{1}{3} - \frac{1}{7(3!)} + \frac{1}{11(5!)} - \frac{1}{15(7!)} + \dots$$

(C)
$$1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \dots$$

(D)
$$\frac{1}{2} - \frac{1}{4(3!)} + \frac{1}{6(5!)} - \frac{1}{8(7!)} + \dots$$

(E)
$$1 - \frac{1}{2!} + \frac{1}{4!} - \frac{1}{6!} + \dots$$

14. The ellipse $9x^2 + 10y^2 = 90$ has

- (A) eccentricity $\frac{1}{10}$, and a focus at (1,0)
- (B) eccentricity $\sqrt{10}$, and a focus at $(\sqrt{10},0)$
- (C) eccentricity $\frac{1}{\sqrt{10}}$, and a focus at (1,0)
- (D) eccentricity $\frac{\sqrt{19}}{10}$, and a focus at $(\sqrt{19}, 0)$
- (E) eccentricity $\sqrt{\frac{19}{10}}$, and a focus at $(\sqrt{19}, 0)$

Suppose Q is a point on the circumference 15. of a circle of radius 1 centered at the origin O, as shown in the diagram. Let R be the point with coordinates (2,0), and let P be the midpoint of the line segment QR. As Q moves around the circle, P traces out a curve whose parametric equations in terms of the angle t shown in the diagram are

(A)
$$x = \frac{3}{2}$$
, $y = \sin t$

(C)
$$x = 1 + \frac{1}{2} \cos t$$
, $y = \frac{1}{2} \sin t$ (D) $x = 1 + \cos t$, $y = \sin t$

(E)
$$x = \frac{3}{2} \cos t$$
, $y = \frac{1}{2} \sin t$

(B)
$$x = \frac{3}{2} - \cos t$$
, $y = \tan t$

(D)
$$x = 1 + \cos t$$
, $y = \sin t$

The curve given by the parametric equations 16.

$$x = 4 \sin t$$
, $y = 2 \cos t$, $0 \le t \le \pi$,

most closely resembles

17. P is the point on the curve

$$x = \sqrt{t^2 + 3}$$
 , $y = t^3$

given by t = 1. The tangent line to the curve at P has the equation

(A)
$$y = 6x - 11$$

(B)
$$y = 12x - 23$$
 (C) $y = 3x - 5$

(C)
$$y = 3x - 5$$

(D)
$$y = 2x - 3$$
 (E) $y = 4x - 7$

(E)
$$y = 4x - 7$$