- Let $f(x) = x^3 + x + 2$. It can (easily) be shown that f(x) has an inverse 1. function g(x). Find g'(4).

- (A) $\frac{2}{3}$ (B) $\frac{1}{2}$ (C) $\frac{1}{4}$ (D) 1(E) $\frac{1}{3}$

2. How many of the following are true?

$$\int_{1}^{\frac{1}{e}} dx = -1$$

ii)
$$\frac{d}{dx} (2^x) = x2^{x-1}$$

iii)
$$\frac{d}{dx} (\log_{3/2} x) = \frac{1}{x(\ln 3 - \ln 2)}$$

iv)
$$e^{x + 2y} = e^x + 2e^y$$

- (A) none (B) two (C) one (D) four (E) three

Let $f(x) = \sqrt[3]{(x+3)^2(x-1)}$. The slope of the graph of f at x = -1 is 3.

(A)
$$\frac{2}{3}$$

(B)
$$-\frac{1}{2}$$

(A)
$$\frac{2}{3}$$
 (B) $-\frac{1}{2}$ (C) $\frac{1}{\sqrt[3]{2}}$ (D) $-\frac{1}{3}$ (E) 1

(D)
$$-\frac{1}{3}$$

- Suppose a tree grows at a yearly rate equal to $\frac{1}{10}$ of its height. If the tree is 4. 10 ft. tall now, approximately how tall will it be in 5 years?
 - (A) 20 ft
- (B) 12 ft
- (C) 16 ft
- (D) 25 ft
- (E) 50 ft

- $\lim_{x \varnothing 1} \frac{\frac{x-3}{4} + \frac{1}{x+1}}{(x-1)^2} = ?$
- (A) $-\frac{1}{2}$ (B) $\frac{1}{4}$ (C) $-\frac{2}{3}$ (D) $\frac{1}{8}$ (E) ∞

 $\lim_{x \varnothing \infty} \left(\frac{x}{x-3} \right)^{2x} = ?$ 6.

$$(A) e^2$$

(A)
$$e^2$$
 (B) $e^{-2/3}$ (C) e^{-3} (D) 1 (E) e^6

(C)
$$e^{-3}$$

7.
$$\frac{1 + \tanh x}{1 - \tanh x} = ?$$

(A)
$$e^{2x}$$

(B)
$$\cosh x + \sinh x$$

(C)
$$\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$

(D)
$$\operatorname{sech} x + \operatorname{csch} x$$

(E)
$$1 - 2e^{x}$$

8. If
$$f(x) = \arcsin(e^x)$$
, then $f'(x) = ?$

(A)
$$\frac{1}{1 + e^{2x}}$$

(B)
$$\frac{e^{x}}{1 + e^{2x}}$$

(C)
$$\frac{1}{\sqrt{1 - e^{2x}}}$$

(D)
$$\frac{1}{e^{x}\sqrt{e^{2x}-1}}$$
 (E) $\frac{e^{x}}{\sqrt{1-e^{2x}}}$

(E)
$$\frac{e^{x}}{\sqrt{1 - e^{2x}}}$$

9. Find the equation of the curve that passes through the point (0,1) and whose slope at (x,y) is $\frac{y^2}{\sec x}$.

(A)
$$y = 1 + \sin x$$

(B)
$$y = \frac{1}{2 - \cos x}$$

(C)
$$y = \frac{\cos x}{1 + \sin x}$$

(D)
$$y = \frac{1}{1 - \sin x}$$

(E)
$$y = \frac{1 - \sin x}{\cos x}$$

10. The solution of the initial value problem

$$x \frac{dy}{dx} + 2y = x^2 + 1, x > 0 \text{ and } y(1) = 1$$

is
$$y = ?$$

(A)
$$\frac{x^2}{2} + x + 1 - \frac{1}{2x^2}$$

(B)
$$\frac{x^2}{4} + \frac{1}{2x^2}$$

(C)
$$\frac{x}{4} + 1 - \frac{2}{x}$$

(D)
$$\frac{x^4}{4} + \frac{x^2}{2} + 1 - \frac{1}{x^2}$$

(E)
$$\frac{x^2}{4} + \frac{1}{2} + \frac{1}{4x^2}$$

- In the partial fraction decomposition of $\frac{2x}{(x+1)(x^2+1)}$, the numerator whose denominator is $\,x^2+1\,$ is 11.

- (A) 1 (B) 2x (C) x + 1 (D) 3x 1 (E) 2 x

If the standard trigonimetric substitution is made, the integral 12.

$$\int \frac{\sqrt{x^2 - 4}}{x^4} dx$$
 becomes

(A)
$$2 \int \frac{\sin \theta}{\cos^4 \theta} d\theta$$

(B)
$$\frac{1}{4} \int \frac{\tan^2 \theta}{\sec^3 \theta} d\theta$$

(C)
$$\frac{1}{8}$$
 $\int \tan \theta \sec^3 \theta \ d\theta$

(D)
$$4 \int \sin^2 \theta \cos^2 \theta d\theta$$

(E)
$$\frac{1}{4} \int \frac{\sec^2 \theta}{\tan^4 \theta} d\theta$$

13.
$$\int_{1}^{e} x \ln x \, dx = ?$$

(A)
$$\frac{1}{2}$$
 (e - 1)

(B)
$$\frac{1}{4}$$
 (3e² - 1) (C) $\frac{1}{4}$ (E) $\frac{1}{4}$ (e² + 1)

(C)
$$\frac{1}{4}$$

(D)
$$\frac{1}{2}$$
 (e²-1)

(E)
$$\frac{1}{4}$$
 (e² + 1)

14.
$$\int_{0}^{3} \frac{1}{(x-1)^3} dx ?$$

(A)
$$\frac{1}{2}$$

(B)
$$\frac{3}{8}$$

(A)
$$\frac{1}{2}$$
 (B) $\frac{3}{8}$ (C) diverges (D) $\frac{1}{6}$ (E) $\frac{1}{4}$

(D)
$$\frac{1}{6}$$

(E)
$$\frac{1}{4}$$

15.
$$\int_{0}^{\infty} (\pi - \frac{2x}{1 + x^2} - 2 \arctan x) dx = ?$$

- (A) 2 (B) $\frac{3\pi}{4}$ (C) In 2 (D) π (E) diverges

How many of the following infinite series are convergent? 16.

$$\sum_{n=1}^{\infty} \ \frac{n^5}{5^n} \ , \quad \sum_{n=1}^{\infty} \ \frac{n!}{(n+2)!} \ , \quad \sum_{n=2}^{\infty} \ \frac{1}{n\sqrt{\ln n}} \ , \quad \sum_{n=1}^{\infty} \ \frac{n^2+1}{n^3+1}$$

- (A) one
- (B) four (C) none
- (D) two (E) three

17. The series
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin n}{n^2}$$

- (A) diverges, by the Ratio Test.
- (B) diverges, by the nth Term Test.
- (C) converges absolutely.
- (D) diverges by the Integral Test.
- (E) converges conditionally.

18. The third order Taylor polynominal at a = 0 for the function

$$f(x) = e^{-2x} \cos x$$

is equal to

(A)
$$1 - 2x + \frac{3}{2}x^2 - \frac{1}{3}x^3$$

(B)
$$1 + x - \frac{1}{2} x^2 + \frac{2}{3} x^3$$

(C)
$$1 - 2x - 2x^2 + \frac{4}{3}x^3$$

(D)
$$1 - x - \frac{3}{2} x^2 - \frac{13}{6} x^3$$

(E)
$$1 + 2x - \frac{1}{2}x^2 + \frac{5}{6}x^3$$

∠ ∞	$\frac{5^{n}}{2}$ x ⁿ	∠ ∞	$\frac{(x-1)^n}{n\cdot 3^n} ,$	∠ ∞	$(-1)^{n} \frac{x^{n}}{x^{n}}$		Z ∞	$(x+2)^n$
∠ n=1	n² ^ '	∠ n=1	n · 3" '	∠ n=1	(,) Ui	,	∠ n=1	N +1

- (A) the first 2
 - (B) the middle 2 (C) the last 3
 - (D) only the 3rd one (E) all of them

A set of polar coordinates for the point whose Cartesian coordinates are 20. $2\sqrt{3}$, 2) is

(A)
$$\left(4, \frac{7}{6}\pi\right)$$
 $\left(4, \frac{2\pi}{3}\right)$

(A)
$$(4, \frac{7}{6}\pi)$$
 (B) $(-4, \frac{5}{6}\pi)$

(D)
$$\left(-4, -\frac{\pi}{6}\right)$$
 (E) $\left(4, \frac{7}{3}\pi\right)$

(E)
$$(4, \frac{7}{3}\pi)$$

21. The polar equation of the circle of radius 13 whose center has Cartesian coordinates (12, -5) is given by

(A)
$$r = 13 \sin \theta$$

(B)
$$r^2 = 5 \sin \theta - 12 \cos \theta$$

(C)
$$r = 2\sqrt{3} \cos \theta - \sqrt{5} \sin \theta$$

(D)
$$r^2 = 12 \cos \theta - 5 \sin \theta$$

(E)
$$r = 24 \cos \theta - 10 \sin \theta$$

The polar equation $r = \sin \theta \tan \theta$ represents a curve whose Cartesian equation 22. is

(A)
$$x^3 + xy^2 = y^2$$

(B)
$$x^2 + y^2 = xy$$

(C)
$$x^2y^2 + x^4 = y^3$$

(D)
$$\sqrt{x^2 + y^2} = x$$

(E)
$$x\sqrt{x^2 + y^2} = y$$

23. The graph of the polar equation

$$r^2 = 4 \cos 2\theta$$

most closely represents

(C)

(E)

24. The area inside one loop of the curve $r = 6 \sin 3\theta$ is

25. A curve is given by the polar equation

$$r \ = \ sin^2 \ \left(\, \frac{\theta}{2} \, \right) \ , \quad 0 \le \theta \le \pi \ .$$

The length of the curve is given by

(A)
$$\frac{2}{3}$$
 π

- (A) $\frac{2}{3} \pi$ (B) 2 (C) $\pi 1$ (D) $\frac{\pi}{2}$ (E) $1 + \sqrt{2}$

Forsan et haec olim meminisse iuvabit

Virgil