1. Let $f(x)=x^{3}+x+2$. It can (easily) be shown that $f(x)$ has an inverse function $g(x)$. Find $g^{\prime}(4)$.
(A) $\frac{2}{3}$
(B) $\frac{1}{2}$
(C) $\frac{1}{4}$
(D) 1 (E) $\frac{1}{3}$
2. How many of the following are true?
i) $\int_{1}^{\frac{1}{e}} \frac{1}{x} d x=-1$
ii) $\frac{d}{d x}\left(2^{x}\right)=x 2^{x-1}$
iii) $\quad \frac{d}{d x}\left(\log _{3 / 2} x\right)=\frac{1}{x(\ln 3-\ln 2)}$
iv) $e^{x+2 y}=e^{x}+2 e^{y}$
(A) none
(B) two
(C) one
(D) four
(E) three
3. Let $f(x)=\sqrt[3]{(x+3)^{2}(x-1)}$. The slope of the graph of f at $x=-1$ is
(A) $\frac{2}{3}$
(B) $-\frac{1}{2}$
(C) $\frac{1}{\sqrt[3]{2}}$
(D) $-\frac{1}{3}$
(E) 1
4. Suppose a tree grows at a yearly rate equal to $\frac{1}{10}$ of its height. If the tree is 10 ft . tall now, approximately how tall will it be in 5 years?
(A) 20 ft
(B) 12 ft
(C) 16 ft
(D) 25 ft
(E) 50 ft
5. $\lim _{x \not ⿴ 1} \frac{\frac{x-3}{4}+\frac{1}{x+1}}{(x-1)^{2}}=$?
(A) $-\frac{1}{2}$
(B) $\frac{1}{4}$
(C) $-\frac{2}{3}$
(D) $\frac{1}{8}$
(E) ∞
6. $\lim _{x \not \varnothing_{\infty}}\left(\frac{x}{x-3}\right)^{2 x}=$?
(A) e^{2}
(B) $e^{-2 / 3}$
(C) e^{-3}
(D) 1
(E) e^{6}
7. $\frac{1+\tanh x}{1-\tanh x}=$?
(A) $e^{2 x}$
(B) $\cosh x+\sinh x$
(C) $\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}$
(D) $\operatorname{sech} x+\operatorname{csch} x$
(E) $1-2 e^{x}$
8. If $f(x)=\arcsin \left(e^{x}\right)$, then $f^{\prime}(x)=$?
(A) $\frac{1}{1+e^{2 x}}$
(B) $\frac{e^{x}}{1+e^{2 x}}$
(C) $\frac{1}{\sqrt{1-\mathrm{e}^{2 x}}}$
(D) $\frac{1}{e^{x} \sqrt{e^{2 x}-1}}$
(E) $\frac{\mathrm{e}^{\mathrm{x}}}{\sqrt{1-\mathrm{e}^{2 x}}}$
9. Find the equation of the curve that passes through the point $(0,1)$ and whose slope at (x, y) is $\frac{y^{2}}{\sec x}$.
(A) $y=1+\sin x$
(B) $y=\frac{1}{2-\cos x}$
(C) $y=\frac{\cos x}{1+\sin x}$
(D) $y=\frac{1}{1-\sin x}$
(E) $y=\frac{1-\sin x}{\cos x}$
10. The solution of the initial value problem

$$
x \frac{d y}{d x}+2 y=x^{2}+1, x>0 \text { and } y(1)=1
$$

is $y=$?
(A) $\frac{x^{2}}{2}+x+1-\frac{1}{2 x^{2}}$
(B) $\frac{x^{2}}{4}+\frac{1}{2 x^{2}}$
(C) $\frac{x}{4}+1-\frac{2}{x}$
(D) $\frac{x^{4}}{4}+\frac{x^{2}}{2}+1-\frac{1}{x^{2}}$
(E) $\frac{x^{2}}{4}+\frac{1}{2}+\frac{1}{4 x^{2}}$
11. In the partial fraction decomposition of $\frac{2 x}{(x+1)\left(x^{2}+1\right)}$, the numerator whose denominator is $x^{2}+1$ is
(A) 1
(B) $2 x$
(C) $x+1$
(D) $3 x-1$
(E) $2-x$
12. If the standard trigonimetric substitution is made, the integral $\int \frac{\sqrt{x^{2}-4}}{x^{4}} d x$ becomes
(A) $2 \int \frac{\sin \theta}{\cos ^{4} \theta} d \theta$
(B) $\frac{1}{4} \int \frac{\tan ^{2} \theta}{\sec ^{3} \theta} d \theta$
(C) $\frac{1}{8} \int \tan \theta \sec ^{3} \theta d \theta$
(D) $4 \int \sin ^{2} \theta \cos ^{2} \theta d \theta$
(E) $\frac{1}{4} \int \frac{\sec ^{2} \theta}{\tan ^{4} \theta} d \theta$
13. $\int_{1}^{e} x \ln x d x=$?
(A) $\frac{1}{2}(\mathrm{e}-1)$
(B) $\frac{1}{4}\left(3 e^{2}-1\right)$
(C) $\frac{1}{4}$
(D) $\frac{1}{2}\left(e^{2}-1\right)$
(E) $\frac{1}{4}\left(\mathrm{e}^{2}+1\right)$
14. $\int_{0}^{3} \frac{1}{(x-1)^{3}} d x$?
(A) $\frac{1}{2}$
(B) $\frac{3}{8}$
(C) diverges
(D) $\frac{1}{6}$
(E) $\frac{1}{4}$
15. $\int_{0}^{\infty}\left(\pi-\frac{2 x}{1+x^{2}}-2 \arctan x\right) d x=$?
(A) 2
(B) $\frac{3 \pi}{4}$
(C) $\ln 2$
(D) π
(E) diverges
16. How many of the following infinite series are convergent?

$$
\sum_{n=1}^{\infty} \frac{n^{5}}{5^{n}}, \quad \sum_{n=1}^{\infty} \frac{n!}{(n+2)!}, \sum_{n=2}^{\infty} \frac{1}{n \sqrt{\ln n}}, \sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{3}+1}
$$

(A) one
(B) four
(C) none
(D) two
(E) three
17. The series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin n}{n^{2}}$
(A) diverges, by the Ratio Test.
(B) diverges, by the nth Term Test.
(C) converges absolutely.
(D) diverges by the Integral Test.
(E) converges conditionally.
18. The third order Taylor polynominal at $\mathrm{a}=0$ for the function

$$
f(x)=e^{-2 x} \cos x
$$

is equal to
(A) $1-2 x+\frac{3}{2} x^{2}-\frac{1}{3} x^{3}$
(B) $1+x-\frac{1}{2} x^{2}+\frac{2}{3} x^{3}$
(C) $1-2 x-2 x^{2}+\frac{4}{3} x^{3}$
(D) $1-x-\frac{3}{2} x^{2}-\frac{13}{6} x^{3}$
(E) $1+2 x-\frac{1}{2} x^{2}+\frac{5}{6} x^{3}$
19. Which of the following series have radius of convergence greater than 1 ?
$\sum_{n=1}^{\infty} \frac{5^{n}}{n^{2}} x^{n}, \quad \sum_{n=1}^{\infty} \frac{(x-1)^{n}}{n \cdot 3^{n}}, \sum_{n=1}^{\infty}(-1)^{n} \frac{x^{n}}{n!}, \sum_{n=1}^{\infty} \frac{(x+2)^{n}}{n+1}$
(A) the first 2
(B) the middle 2
(C) the last 3
(D) only the $3^{\text {rd }}$ one
(E) all of them
20. A set of polar coordinates for the point whose Cartesian coordinates are $2 \sqrt{3}, 2$) is
(A) $\left(4, \frac{7}{6} \pi\right)$
(B) $\left(-4, \frac{5}{6} \pi\right)$
(4, $\frac{2 \pi}{3}$)
(C)
(D) $\left(-4,-\frac{\pi}{6}\right)$
(E) $\left(4, \frac{7}{3} \pi\right)$
21. The polar equation of the circle of radius 13 whose center has Cartesian coordinates $(12,-5)$ is given by
(A) $r=13 \sin \theta$
(B) $r^{2}=5 \sin \theta-12 \cos \theta$
(C) $r=2 \sqrt{3} \cos \theta-\sqrt{5} \sin \theta$
(D) $r^{2}=12 \cos \theta-5 \sin \theta$
(E) $r=24 \cos \theta-10 \sin \theta$
22. The polar equation $r=\sin \theta \tan \theta$ represents a curve whose Cartesian equation is
(A) $x^{3}+x y^{2}=y^{2}$
(B) $x^{2}+y^{2}=x y$
(C) $x^{2} y^{2}+x^{4}=y^{3}$
(D) $\sqrt{x^{2}+y^{2}}=x$
(E) $x \sqrt{x^{2}+y^{2}}=y$
23. The graph of the polar equation

$$
r^{2}=4 \cos 2 \theta
$$

most closely represents
(A)
(B)
(C)
(D)
(E)
24. The area inside one loop of the curve $r=6 \sin 3 \theta$ is
(A) 6π
(B) $2 \sqrt{3} \pi$
(C) 3π
(D) $\frac{9}{2} \pi$
(E) 2π
25. A curve is given by the polar equation

$$
r=\sin ^{2}\left(\frac{\theta}{2}\right), \quad 0 \leq \theta \leq \pi .
$$

The length of the curve is given by
(A) $\frac{2}{3} \pi$
(B) 2
(C) $\pi-1$
(D) $\frac{\pi}{2}$
(E) $1+\sqrt{2}$

