Mathematics 126: Test I

September 22, 1998

November 8, 2004

Name: \qquad

- The test runs for one hour.
- All work is to be your own.
- You may use one sheet of paper with formulae and notes, but should not use any other notes or your book.
- You may use graphing calculators (but not palmtops or laptops). You may not use

1. notes in your calculator;
2. numerical integration facilities on your calculator; or
3. algebra, differentiation, or integration facilities of your calculator.

The possible answers to the seven multiple choice questions are either correct or wrong. Please write the letter of the correct answer in the space provided below. The remaining questions will require that you demonstrate knowledge of a correct procedure for arriving at the answer. Please circle the answer you want us to consider. The correct answer is not enough for full credit: you must indicate how you arrived at it. Please mark out any work on a problem that you do not want us to consider.

Problem	Answer	Possible Points	Points Lost
1		7	
2		7	
3		7	
4		7	
5		7	
6		7	
7		7	
8	-	12	
9	-	12	
10	-	12	
11	-	15	

Total Points Lost

Problem 1 (7 points total) $f(x)=x^{5}+x+1$ is a differentiable increasing function defined $(-\infty, \infty)$. Let $g(x)$ denote the inverse of $f(x)$. Noting that $f(0)=1$, compute $g^{\prime}(1)$.
a) 3
b) 6
c) $\frac{1}{6}$
d) $\frac{1}{3}$
e) 1

Problem 2 (7 points total) Find $\lim _{x \rightarrow \infty} x^{\frac{1}{\ln (x+2)}}$.
a) 0
b) e
c) $\quad e^{\frac{1}{2}}$
d) 1
e) $\frac{1}{2}$

Problem 3 (7 points total) Charcoal caused by a volcanic eruption has 25\% of the carbon-14 found in living matter. About how long ago was the volcanic eruption. Assume that the half life of carbon-14 is 5,700 years. You may use $\ln 2=0.69$ and $\ln 0.25=-1.38$.
a) 14,250
b) 2,850
c) 5,700
d) 8,550
e) 11,400

Problem 4 (7 points total) For x satisfying $|x|<1, \tan \left(\sin ^{-1}(x)\right)=$
a) $\frac{1-x^{2}}{x}$
b) $\sqrt{1-x^{2}}$
c) $\frac{x}{\sqrt{1-x^{2}}}$
d) $\frac{1}{1+x^{2}}$
e) $\frac{x}{1+x^{2}}$

Problem 5 (7 points total) $\int_{0}^{4} \frac{2 x \mathrm{~d} x}{x^{2}+2}=$
a) $\ln 16$
b) $\ln 36$
c) $2\left(\tan ^{-1}(18)-\tan ^{-1}(2)\right)$
d) $\sec ^{-1}(18)-\sec ^{-1}(2)$
e) $2 \ln 3$

Problem 6 (7 points total) Use Euler's method with $\mathrm{d} x=0.5$ to estimate $y(2.5)$ if $y^{\prime}=1-y / x$ and $y(2)=-1$.
a) 0.7
b) 0.75
c) $\quad-0.25$
d) 0.25
e) 0.5

Problem 7 (7 points total) Which of the following functions satisfies the initial value problem $x\left(1+x^{2}\right) y^{\prime}=\tan (y)$ with $y(0)=0$.
a) $\frac{1}{1+x^{2}}$
b) $\tan ^{-1}(x)$
c) $\tan ^{-1}\left(x^{2}\right)$
d) x
e) $\tan ^{-1}(x)+1$

Problem 8 (12 points total) $\int \sqrt{1+\sinh ^{2}(x)} \mathrm{d} x=$

Problem 9 (12 points total) $\int \frac{\mathrm{d} x}{4 x^{2}+16 x+17}=$

Problem 10 (12 points total) $\int \frac{\mathrm{d} x}{\sqrt{4-x^{2}}}=$

Problem 11 (15 points total) Solve the differential equation $y^{\prime}+\sin (x) y=2 x e^{\cos (x)}$.

