Mathematics 126: Test I

September 22, 1998

November 8, 2004

Name: _____

- The test runs for one hour.
- All work is to be your own.
- You may use one sheet of paper with formulae and notes, but should not use any other notes or your book.
- You may use graphing calculators (but not palmtops or laptops). You may not use
 - 1. notes in your calculator;
 - 2. numerical integration facilities on your calculator; or
 - 3. algebra, differentiation, or integration facilities of your calculator.

The possible answers to the seven multiple choice questions are either correct or wrong. *Please write the letter of the correct answer in the space provided below.* The remaining questions will require that you demonstrate knowledge of a correct procedure for arriving at the answer. Please circle the answer you want us to consider. The correct answer is not enough for full credit: you must indicate how you arrived at it. Please mark out any work on a problem that you do not want us to consider.

Problem	Answer	Possible Points	Points Lost
1		7	
2		7	
3		7	
4		7	
5		7	
6		7	
7		7	
8		12	
9		12	
10		$1\overline{2}$	
11		15	

Total Points Lost _____

Problem 1 (7 points total) $f(x) = x^5 + x + 1$ is a differentiable increasing function defined $(-\infty, \infty)$. Let g(x) denote the inverse of f(x). Noting that f(0) = 1, compute g'(1).

a) 3 b) 6 c)
$$\frac{1}{6}$$
 d) $\frac{1}{3}$ e) 1

Problem 2 (7 points total) Find $\lim_{x\to\infty} x^{\frac{1}{\ln(x+2)}}$.

a)	0	b)	e	c)	$e^{\frac{1}{2}}$	d)	1	e)	$\frac{1}{2}$
----	---	----	---	----	-------------------	----	---	----	---------------

Problem 3 (7 points total) Charcoal caused by a volcanic eruption has 25% of the carbon-14 found in living matter. About how long ago was the volcanic eruption. Assume that the half life of carbon-14 is 5,700 years. You may use $\ln 2 = 0.69$ and $\ln 0.25 = -1.38$.

a) 14,250 b) 2,850 c) 5,700 d) 8,550 e) 11,400

Problem 4 (7 points total) For x satisfying |x| < 1, $\tan(\sin^{-1}(x)) =$

a)
$$\frac{1-x^2}{x}$$
 b) $\sqrt{1-x^2}$ c) $\frac{x}{\sqrt{1-x^2}}$ d) $\frac{1}{1+x^2}$ e) $\frac{x}{1+x^2}$

Problem 5 (7 points total) $\int_0^4 \frac{2x dx}{x^2 + 2} =$

a) $\ln 16$ b) $\ln 36$ c) $2(\tan^{-1}(18) - \tan^{-1}(2))$ d) $\sec^{-1}(18) - \sec^{-1}(2)$ e) $2\ln 3$

Problem 6 (7 points total) Use Euler's method with dx=0.5 to estimate y(2.5) if y' = 1 - y/x and y(2) = -1.

a) 0.7 b) 0.75 c) -0.25 d) 0.25 e) 0.5

Problem 7 (7 points total) Which of the following functions satisfies the initial value problem $x(1+x^2)y' = \tan(y)$ with y(0) = 0.

a)
$$\frac{1}{1+x^2}$$
 b) $\tan^{-1}(x)$ c) $\tan^{-1}(x^2)$ d) x e) $\tan^{-1}(x) + 1$

Problem 8 (12 points total) $\int \sqrt{1 + \sinh^2(x)} dx =$

Problem 9 (12 points total) $\int \frac{\mathrm{d}x}{4x^2 + 16x + 17} =$

Problem 10 (12 points total) $\int \frac{\mathrm{d}x}{\sqrt{4-x^2}} =$

Problem 11 (15 points total) Solve the differential equation $y' + \sin(x)y = 2xe^{\cos(x)}$.