1. Find the length of the curve:

$$(x(t), y(t)) = \left(\frac{t^2}{2}, \frac{1}{3}(2t+1)^{\frac{3}{2}}\right), \ 0 \le t \le 4.$$

(A) 12

(B) 13

(C) 14

(D) 15

(E) 16

- 2. For what values of x does the series $\sum_{n=0}^{\infty} (4x^2)^n$ converge absolutely.
- (A) $|x| < \frac{1}{2}$

- (B) |x| < 1 (C) |x| < 4 (D) |x| < 2 (E) $|x| < \frac{1}{4}$

- 3. The degree 5 term of the Maclaurin series for $\cos(x)\cos(x^2)$ is: (Hint: Expand first the factors as a Maclaurin series).
- (A) 0
- (B) $-\frac{1}{720}$
- (C) $\frac{1}{720}$
- (D) $\frac{7}{720}$
- (E) $-\frac{7}{720}$

- 4. Suppose we compute an approximation value for $(1.2)^{\frac{7}{2}}$ by using the second order Taylor polynomial for $f(x) = x^{\frac{7}{2}}$ at a = 1. According to Taylor's theorem the size of the error in the approximation is:
- (A) $\frac{7}{400}\sqrt{c}$ where $1 \le c \le 1.2$ (B) $\frac{21}{200}\sqrt{c}$ where $1 \le c \le 1.2$ (C) $\frac{7}{400}\sqrt{c}$ where $0 \le c \le 0.2$

(D) $\frac{21}{200}\sqrt{c}$ where $0 \le c \le 0.2$

(E) $\frac{21}{200}c^{1.5}$ where $0 \le c \le 0.2$

- 5. Find the area of the surface generated by revolving the circle $(x(t),y(t))=(\cos(t),5+\sin(t)),\,0\leq t\leq 2\pi,$ around the x-axis.
- (A) $20\pi^2$
- (B) $5\pi^2$
- (C) $10\pi^2$
- (D) π^2
- (E) $4\pi^2$

- 6. Compute the Eccentricity of the Hyperbola $\frac{x^2}{16} \frac{y^2}{9} = 1$
- (A) $\frac{5}{4}$

- (B) 5
- (C) $\frac{\sqrt{7}}{4}$

(D) $\frac{\sqrt{7}}{3}$

(E) $\frac{5}{3}$

7. The polar equation $r=-8\cos(\theta)$, where $r\geq 0$ and $0\leq \theta\leq 2\pi$, is the same as the cartesian equation:

(A)
$$x^2 + 8x + y^2 = 0$$

(B)
$$(x-4)^2 + y^2 = 16$$

(C)
$$(x+4)^2 + y^2 = 8$$

(D)
$$(x-4)^2 + y^2 = 8$$

(E)
$$x^2 - 8x + y^2 - 8 = 0$$

8. (12 pts) Find a series solution for the initial value problem:

$$(1-x)y'-y=0, y(0)=2.$$

9. (A) (6 pts) Write down the Maclaurin series for $f(x) = \cos \sqrt{x}$.

(B) (6 pts) Find a series excession for the definite integral $\int_0^1 \cos \sqrt{x} \ dx$.

10. (12 pts) Find the area of the region in the plane enclosed by the cardioid $r=2(1+\cos(\theta))$.

11. (15 pts) Cosider the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$. Sketch in the following graph the ellipse and indicate the focal points and the lines of Directrix. On the bottom provide your computed results:

- (A) Focal Points:
- (B) Eccentricity:
- (C) Lines of Directrix: