1. Find the length of the curve:

$$
(x(t), y(t))=\left(\frac{t^{2}}{2}, \frac{1}{3}(2 t+1)^{\frac{3}{2}}\right), 0 \leq t \leq 4 .
$$

(A) 12
(B) 13
(C) 14
(D) 15
(E) 16
2. For what values of x does the series $\sum_{n=0}^{\infty}\left(4 x^{2}\right)^{n}$ converge absolutely.
(A) $|x|<\frac{1}{2}$
(B) $|x|<1$
(C) $|x|<4$
(D) $|x|<2$
(E) $|x|<\frac{1}{4}$
3. The degree 5 term of the Maclaurin series for $\cos (x) \cos \left(x^{2}\right)$ is: (Hint: Expand first the factors as a Maclaurin series).
(A) 0
(B) $-\frac{1}{720}$
(C) $\frac{1}{720}$
(D) $\frac{7}{720}$
(E) $-\frac{7}{720}$
4. Suppose we compute an approximation value for $(1.2)^{\frac{7}{2}}$ by using the second order Taylor polynomial for $f(x)=x^{\frac{7}{2}}$ at $a=1$. According to Taylor's theorem the size of the error in the approximation is:
(A) $\frac{7}{400} \sqrt{c}$ where $1 \leq c \leq 1.2$
(B) $\frac{21}{200} \sqrt{c}$ where $1 \leq c \leq 1.2$
(C) $\frac{7}{400} \sqrt{c}$ where $0 \leq c \leq 0.2$
(D) $\frac{21}{200} \sqrt{c}$ where $0 \leq c \leq 0.2$
(E) $\frac{21}{200} c^{1.5}$ where $0 \leq c \leq 0.2$
5. Find the area of the surface generated by revolving the circle $(x(t), y(t))=(\cos (t), 5+\sin (t)), 0 \leq t \leq 2 \pi$, around the x-axis.
(A) $20 \pi^{2}$
(B) $5 \pi^{2}$
(C) $10 \pi^{2}$
(D) π^{2}
(E) $4 \pi^{2}$
6. Compute the Eccentricity of the Hyperbola $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$
(A) $\frac{5}{4}$
(B) 5
(C) $\frac{\sqrt{7}}{4}$
(D) $\frac{\sqrt{7}}{3}$
(E) $\frac{5}{3}$
7. The polar equation $r=-8 \cos (\theta)$, where $r \geq 0$ and $0 \leq \theta \leq 2 \pi$, is the same as the cartesian equation:
(A) $x^{2}+8 x+y^{2}=0$
(B) $(x-4)^{2}+y^{2}=16$
(C) $(x+4)^{2}+y^{2}=8$
(D) $(x-4)^{2}+y^{2}=8$
(E) $x^{2}-8 x+y^{2}-8=0$
8. (12 pts) Find a series solution for the initial value problem:

$$
(1-x) y^{\prime}-y=0, \quad y(0)=2
$$

9. (A) (6 pts) Write down the Maclaurin series for $f(x)=\cos \sqrt{x}$.
(B) (6 pts) Find a series exression for the definite integral $\int_{0}^{1} \cos \sqrt{x} d x$.
10. (12 pts) Find the area of the region in the plane enclosed by the cardioid $r=2(1+\cos (\theta))$.
11. (15 pts) Cosider the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$. Sketch in the following graph the ellipse and indicate the focal points and the lines of Directrix. On the bottom provide your computed results:

(A) Focal Points:
(B) Eccentricity:
(C) Lines of Directrix:
