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This short handout consists of 3 sections. The �rst gives a de�nition of
the complex numbers, C , and explains how to add, subtract, multiply, and
divide. This is the most important section and the only one that you are
responsible for.

The second and third sections detail some basic facts about C . Reading
through these sections will give you some feeling for the complex numbers. I
refer to the �ne book Numbers (by Ebbinghaus et al., Springer-Verlag (1990))
for a full historical development of numbers from the natural numbers on
through and far beyond the complex numbers. In particular there is a whole
chapter on C telling its many century old history, and chapters on the number
�, and on the fundamental theorem of algebra.

1 Basic facts about the complex numbers

The complex numbers regarded as a set are simply the plane, R2 . Thinking of
the points in the plane as pairs of real numbers, (x; y), we see that specifying
a complex number is the same as giving a pair of two real numbers. We write
this pair as x+y

p�1 where
p�1 is a formal symbol with the multiplicationp�1 � p�1 de�ned to be �1. This is analogous to introducing the symbolp

2 with the property that
p
2 � p2 = 2. Usually the

p�1 is denoted1 as i,
which we will do from here on. We add complex numbers just as if they were

1for imaginary, though it is as real as most things scientists and engineers think about.
Indeed most innovations in numbers were given names showing the original suspicious bent
of the �rst users, e.g., numbers that are not fractions, e.g., numbers such as e; �;

p
2 are

called irrational numbers, and roots of integers, such as
p
2, are called surds (short for

absurd).
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vectors. (2 + 3i) + (4 + 7i) = 6 + 10i. We multiply complex numbers just as
if they were sums of variables|except for the one relation i2 = �1. Thus

(2+3i) � (5+4i) = 2 �5+3i �5+2 �4i+3i �4i = 10+15i+8i�12 = �2+23i:

We regard the real numbers, R,as a subset of the complex numbers, C , by
identifying a real number x with x + 0i which we just write x. Thus 2 is
naturally the complex number 2 + 0i which we write 2, and we let 0 denote
the point 0 + 0i, i.e., the origin of the plane. Addition and multiplication
of real numbers regarded as complex numbers gives the same answers as
addition and multiplication of the real numbers thought of as real numbers.
Thus 2 � 3 = (2 + 0i) � (3 + 0i).

Homework Problem 1 Compute the following and write them in the form
a+ bi with a; b 2 R.

1. (2 + 0i) � (3 + 0i) =? (2 + 0i) + (3 + 0i) =?

2. (2 + 3i) � (2 + 3i) =? (2 + 3i) + (2 + 3i) =? (2 + 3i)� (2 + 3i) =?

3. (2 + 3i) � (2� 3i) =?

4.

 p
2

2
+

p
2

2
i

!2

=?

If a+ bi 6= 0 then:

(a + bi) � a� bi

a2 + b2
= 1:

Thus if a + bi 6= 0 then:

(a+ bi)�1 =
1

a+ bi
=

a

a2 + b2
� b

a2 + b2
i:

Homework Problem 2 Compute and put in the form a + bi the numbers:
1

2 + 3i
,
1

5
,
1

4i
.

There are some useful operations on C . One is conjugation. The conju-
gate of the complex number 2 + 3i is 2 � 3i, and in general with a; b 2 R

we have that the conjugate of a + bi is a � bi. The conjugate of a complex
number z 2 C is denoted z, e.g., 2 + 3i = 2� 3i.
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Homework Problem 3 Compute and put in the form a+ bi the products:
(2 + 3i) � (2 + 3i); (2 + 3i) � (1 + i).

Note that given a complex number z = a+bi with a; b 2 R, z �z = a2+b2 is a
nonnegative real number which is only 0 if z = 0. We denote the nonnegative
square root of z � z by jzj and call it the absolute value of z.

Homework Problem 4 Compute j2ij, j3 + 4ij, j3� 4ij,
���� 1

3� 4i

����, j � 3j.

Note for real numbers (regarded as complex numbers) this new absolute value
agrees with the usual absolute value.

2 The Fundamental Theorem of Algebra

The fundamental theorem of algebra says in e�ect that the process of ex-
panding number systems by adding roots of polynomials (like fractions and
square roots of fractions) ends with the complex numbers.
Theorem. Let p(z) = a0 + a1z + � � �+ anz

n denote a polynomial of the n-th
degree with coeÆcients ai 2 C . Then there is a complex number z1 such that
p(z1) = 0. By using the Euclidean algorithm for polynomials and induction it
follows that there exist complex numbers z1; : : : ; zn (not necessarily distinct)

such that p(z) = an

nY
i=1

(z � zi).

There are many proofs of this basic result, but no purely algebraic proofs.
Note that using p(z) = z2 � (1 + 2i) this implies that

p
1 + 2i exists as a

complex number (actually there are two square roots just as there are two
square roots of 1). You might try to show that one of them isp

2 + 2
p
5

2
+

2p
2 + 2

p
5

p�1:

3 The Euler identity

In calculus the Taylor series around the origin for the exponential function
is computed:

ex = 1 + x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ � � � (1)
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Here for a positive integer k, k! denotes k-factorial, i.e., 1! = 1, 2! = 2, 3! = 6,
and for k � 4 we have k! := 1 � 2 � 3 � � �k. It is a standard convention that
0! = 1. Two other famous series are the ones for the sin and the cos:

cos(x) = 1� x2

2!
+

x4

4!
� x6

6!
+ � � � (2)

sin(x) = x� x3

3!
+

x5

5!
� x7

7!
+ � � � (3)

These equations are obviously related. Euler (1707-1783) seems to have been
the �rst to make the leap and rewrite eix as

eix = 1 + ix+
(ix)2

2!
+

(ix)3

3!
+

(ix)4

4!
+

(ix)5

5!
+ � � �

= 1 + ix� x2

2!
� i

x3

3!
+

x4

4!
+ i

x5

5!
� � � �

=

�
1� x2

2!
+

x4

4!
� x6

6!
+ � � �

�
+ i

�
x� x3

3!
+

x5

5!
� � � �

�
= cos(x) + i sin(x):

This is an amazing relation. For example, ei� = cos(�) + i sin(�). Since
cos(�) = 1 and sin(�) = 0 we get the striking relation:

e
p
�1� + 1 = 0:

In Euler's day when �1 still made people uneasy, when � and e were known
to be slightly weird numbers, and when the complex numbers were considered
at best borderline; this relation, involving the 5 most common numbers in
mathematics, got people quite excited.

One of the basic facts about ex is that

ex+y = ex � ey: (4)

The map, x ! ex, is in fact a isomorphism from (R;+) to (R+ ; �) where R+

denotes the positive real numbers. For complex numbers, the exponential
map, z ! ez, is not quite an isomorphism2 since all the numbers

2�iZ := f2�njn 2 Zg
2The image of C under the exponential map is not R+ but C � , the complex numbers

minus the origin. C � looks like (after some stretching) an in�nitely long cylinder|0 is
at one end and 1 is at the other. Geometrically the exponential map takes C like an
in�nitely long and in�nitely wide sheet of aluminum foil and rolls it neatly around the
cylinder.
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go to 1 under exponentiation. What does equation (4) say if we use complex
numbers? If we let x; y 2 R, then

cos(x + y) + i sin(x+ y) = eix+iy = eix � eiy
= (cos(x) + i sin(x))(cos(y) + i sin(y))

= [cos(x) cos(y)� sin(x) sin(y)] + i [cos(x) sin(y) + sin(x) cos(y)] :

Equating real and imaginary parts we get the two formulae for cosines and
sines of sums of angles:

cos(x+ y) = cos(x) cos(y)� sin(x) sin(y)

sin(x+ y) = cos(x) sin(y) + sin(x) cos(y):

The Euler identity has a number of interesting consequences.

Geometrical meaning of multiplication Given a point a + bi in the
complex numbers, we can write a = � cos(�) and b = � sin(�) where � =
ja + bij = p

a2 + b2 and � := arccos(a
�
). Thus a + ib = �ei�. This is called

the polar representation of a complex number. Thus � is the distance from
a + ib to the origin, and � is the angle measured from the x-axis to the ray
from the origin to a+ bi. Thus if c+ di is another complex number, write it
in polar form c+ di = �0ei�

0

. Then (a+ bi)(c + di) = ��0ei(�+�0). Thus

multiplying two complex numbers is the same as multiplying their
absolute values and adding the angles they make with the x-axis.

The roots of unity Given any positive integer n there is a subset of n
solutions of zn � 1 = 0 contained in (C � ; �) and closed under multiplication.
Let

! := e
2�i

n = cos

�
2�

n

�
+ i sin

�
2�

n

�
:

Note that !n = e
2�i

n
n = e2�i = 1. Also since n is the least positive inte-

ger, k, such that cos

�
2�

n
k

�
= 1 we see that n is indeed the order of this

element. Geometrically ! is a point on the unit circle 360
n

degrees in the
counterclockwise direction from the point (1; 0).
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Over the complex numbers zn � 1 can be factored not just as

(z � 1) �
 

n�1X
j=0

zj

!
;

but down to linear factors. Note (!j)n � 1 = 0 for all 1 � k � n. Using this
it follows that

zn � 1 =
nY

j=0

(z � !j):

For example if n = 4 then:

z4 � 1 = (z � 1) � (z � i) � (z + 1) � (z + i):
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