1. Which is a correct statement of the Comparison Test (direct or limit form) for convergence of series?

Given two positive term series $\sum a_{n}, \sum b_{n}$,
(A) if $a_{n} \geq b_{n}$ for all values of n, and $\sum b_{n}$ converges, then $\sum a_{n}$ converges
(B) if $\lim _{n \not \varnothing_{\infty}} \frac{a_{n}}{b_{n}}=0$, and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges
(C) if $\lim _{n \varnothing \infty} \frac{a_{n}}{b_{n}}=\infty$, and $\sum b_{n}$ converges, then $\sum a_{n}$ converges
(D) if $a_{n} \leq b_{n}$ for all n, and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges
(E) if $a_{n} \geq b_{n}$ for all n, and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges
2. Given the infinite series
(1) $\sum_{n=1}^{\infty} \frac{n+1}{n^{3}+n^{2}+2}$
(2) $\sum_{n=1}^{\infty} \frac{2+(-1)^{n}}{n}$
(3) $\sum_{n=1}^{\infty} \sqrt{\frac{n+1}{n^{3}+n^{2}+2}}$
(A) All three series converge
(B) All three series diverge
(C) (1) converges, (2) diverges, (3) diverges
(D) (1) converges, (2) converges, (3) diverges
(E) (1) diverges, (2) converges, (3) converges
3. When the Ratio Test is applied to the two infinite series
(1) $\sum_{n=1}^{\infty} n^{-2} 2^{-n}$
(2) $\sum_{n=1}^{\infty} \frac{n!}{(2 n+1)!}$
the information it provides is
(A) (1) converges, no information on (2)
(B) (2) diverges, no information on (1)
(C) (1) converges, (2) diverges
(D) (1) and (2) both diverge
(E) (1) and (2) both converge
4. Which one of the folowing series is absolutely convergent?
(A) $\sum_{n=1}^{\infty} \frac{2+\cos n}{n}$
(B) $\sum_{n=1}^{\infty} \frac{\cos n}{n^{2}}$
(C) $\sum_{n=1}^{\infty} \frac{2 n+(-1)^{n}}{n^{2}}$
(D) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+\sqrt{n}}$
(E) $\sum_{n=1}^{\infty} \frac{(-1)^{n} n^{2}}{2 n^{2}+n}$
5. Given the infinite series
(1) $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$
(2) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{2}}$
(A) The n-th Root Test shows that (1) diverges, and the Integral Test shows that (2) diverges
(B) The Ratio Test shows that (1) diverges, and the Ratio Test shows that (2) converges
(C) The Ratio Test shows that (1) converges, and the Integral Test shows that (2) converges
(D) The Comparison Test shows that (1) converges, and the Ratio Test shows that (2) diverges
(E) The n-th Root Test shows that (1) converges, and the Comparison Test shows that (2) diverges
6. Which one of the following statements is true?
(A) If $\sum a_{n}$ is an alternating series which converges, then $\sum a_{n}$ converges absolutely
(B) If $\sum a_{n}$ converges conditionally, then $\sum{ }^{r M} a_{n}{ }^{\text {TM }}$ converges absolutely
(C) If $\sum a_{n}$ is an alternating series, and $a_{n} \varnothing 0$ as $n \varnothing \infty$, then $\sum a_{n}$ converges absolutely
(D) If $\sum{ }^{\text {TM }} a_{n}{ }^{\text {rm }}$ diverges, then $\sum a_{n}$ diverges
(E) If $\sum a_{n}$ converges conditionally, then $\sum{ }^{\text {TM }} a_{n}{ }^{T M}$ diverges
7. One of the endpoints of the interval of convergence of the series

$$
\sum_{n=0}^{\infty} 2^{n} n^{2}(x-1)^{n}
$$

is
(A) 3
(B) $\frac{2}{3}$
(C) $\frac{1}{2}$
(D) 2
(E) $\frac{1}{3}$
8. The degree 6 term of the Maclaurin series for $\sin \left(x^{2}\right)$ is
(A) $\frac{1}{6} x^{6}$
(B) $\frac{1}{3} x^{6}$
(C) $-\frac{1}{6!} x^{6}$
(D) $-\frac{1}{6} x^{6}$
(E) $\frac{1}{6!} x^{6}$
9. The third order Taylor polynomial for $f(x)=e^{-x} \cos x$ is
(A) $1-x+\frac{2}{3} x^{3}$
(B) $1+x-\frac{1}{3} x^{3}$
(C) $1+x-\frac{2}{3} x^{3}$
(D) $1-x+\frac{1}{2} x^{2}-\frac{1}{3} x^{3}$
(E) $1-x+\frac{1}{3} x^{3}$
10. A function $f(x)$ is given by a series

$$
f(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{n 3^{n-1}},-3<x<3
$$

The derivative of $f(x)$ at $x=1$ is $f^{\prime}(1)=$
(A) $\frac{2}{3}$
(B) $\frac{3}{2}$
(C) $\frac{3}{4}$
(D) $\ln \left(\frac{2}{3}\right)$
(E) $\ln \left(\frac{3}{2}\right)$
11. The approximate value of $\ln (1.4)$ obtained by using the second order Taylor polynomial for $f(x)=\ln x$ at $a=1$ is
(A) 0.48
(B) 0.18
(C) 0.42
(D) 0.32
(E) 0.24
12. According to Taylor's theorem, the size of the error in the approximation to $\ln (1.4)$ referred to in question 11 is equal to
(A) $\frac{1}{6} \mathrm{c}^{3}$, where $0<\mathrm{c}<0.4$
(B) $\frac{1}{6} \ln \mathrm{c}$, where $1<\mathrm{c}<1.4$
(C) $\frac{0.072}{\mathrm{c}^{3}}$, where $1<\mathrm{c}<1.4$
(D) $\frac{0.064}{3 c^{3}}$, where $1<c<1.4$
(E) (0.42) In c , where $1<\mathrm{c}<1.4$
13. The coefficient of x^{3} in the Maclaurin series for $\frac{1}{\sqrt{1+x}}$ is
(A) $-\frac{1}{2}$
(B) $\frac{3}{32}$
(C) $\frac{1}{16}$
(D) $-\frac{5}{16}$
(E) $\frac{1}{8}$
14. $\int_{0}^{1} x^{2} \cos \left(x^{2}\right) d x=$
(A) $\frac{1}{3}-\frac{1}{7(2!)}+\frac{1}{11(4!)}-\frac{1}{15(6!)}+\cdots$
(B) $\frac{1}{3}-\frac{1}{3 \cdot 5(2!)}+\frac{1}{3 \cdot 9(4!)}-\frac{1}{3 \cdot 13(6!)}+\ldots$
(C) $\frac{1}{5}-\frac{1}{9(3!)}+\frac{1}{13(5!)}-\frac{1}{17(7!)}+\ldots$
(D) $\frac{1}{3 \cdot 3}-\frac{1}{3 \cdot 7(3!)}+\frac{1}{3 \cdot 11(5!)}-\frac{1}{3 \cdot 15(7!)}+\ldots$
(E) $1-\frac{1}{4(2!)}+\frac{1}{8(4!)}-\frac{1}{12(6!)}+\ldots$
15. The equation $y^{2}=20-2 x^{2}$ represents
(A) a hyperbola with a focus at $(\sqrt{30}, 0)$
(B) a hyperbola with a focus at $(0, \sqrt{10})$
(C) an ellipse with a focus at $(0, \sqrt{10})$
(D) an ellipse with a focus at $(\sqrt{10}, 0)$
(E) a hyperbola with a focus at $(0, \sqrt{30})$
16. A line segment $P Q$ of length 3 moves in such a way that Q always lies on the x-axis, and the intersection of $P Q$ with the y-axis is the point R at distance 1 from Q . The point P traces out a curve whose parametric equations in terms of the angle t shown in the diagram are
(A) $x=2 \cos t, y=3 \sin t$
(B) $x=3 \cos t-1, y=2 \sin t+1$
(C) $x=3 \cos t, y=4 \sin t$
(D) $x=\frac{2}{3} \cos t, y=\sin t$
(E) $x=\frac{3}{4} \cos t, y=\sin t$
17. The curve given by the parametric equations

$$
x=\sqrt{1-t^{4}}, \quad y=t^{2}, \quad-1 \leq t \leq 0
$$

most closely resembles
(A)
(B)
(C)
(D)
(E)

