Math 126A: Calculus II

Name:
Exam II November 11, 1999
There are 7 problems worth of total of 80 points. You start with 20 points. To receive full credit you must show all your work and include all important steps.

You may use a calculator.

1. (10 pts) Give the partial fraction decomposition of $\frac{x^{2}-2 x+2}{x^{3}-2 x^{2}+x}$.
2. (10 pts) Use a trigonometric substitution to integrate $\int \frac{x^{2}}{\left(x^{2}+1\right)^{5 / 2}} d x$.
3. (12 pts) Improper Integrals.
(a) Evaluate $\int_{0}^{\infty} x e^{-x^{2}} d x$
(b) Determine whether the integral $\int_{1}^{\infty} \frac{\sqrt{x^{2}+1}}{x^{2}} d x$ converges.
4. (12 pts) Infinite Series.
(a) Evaluate $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$.
(b) Suppose $a_{1}=3, a_{2}=2$, and for any $N>2, \sum_{n=1}^{N} a_{n}=\frac{N-3 \sqrt{N}}{2 N+\sqrt{N}}$. Determine the value of the series $\sum_{n=3}^{\infty} a_{n}$. (Note: The range of indices in the question is $n=3$ to ∞.)
5. (18 pts) Determine whether the following series converge.

$$
\text { (a) } \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+5 n-4}}
$$

(b) $\sum_{n=1}^{\infty} \frac{n!}{(2 n-1)!}$
(c) $\sum_{n=2}^{\infty} \frac{1}{(\ln (n))^{n}}$
6. (6 pts) Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}+1}{n^{3}}$ converges absolutely, converges conditionally, or diverges.
7. (12 pts)
(a) Find the interval of convergence of the power series:

$$
\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{2^{n}}
$$

(b) Find the Taylor polynomial of order 3 for $f(x)=\ln (2-x)$ at $x=1$.

