(*********************************************************************** Mathematica-Compatible Notebook This notebook can be used on any computer system with Mathematica 3.0, MathReader 3.0, or any compatible application. The data for the notebook starts with the line of stars above. To get the notebook into a Mathematica-compatible application, do one of the following: * Save the data starting with the line of stars above into a file with a name ending in .nb, then open the file inside the application; * Copy the data starting with the line of stars above to the clipboard, then use the Paste menu command inside the application. Data for notebooks contains only printable 7-bit ASCII and can be sent directly in email or through ftp in text mode. Newlines can be CR, LF or CRLF (Unix, Macintosh or MS-DOS style). NOTE: If you modify the data for this notebook not in a Mathematica- compatible application, you must delete the line below containing the word CacheID, otherwise Mathematica-compatible applications may try to use invalid cache data. For more information on notebooks and Mathematica-compatible applications, contact Wolfram Research: web: http://www.wolfram.com email: info@wolfram.com phone: +1-217-398-0700 (U.S.) Notebook reader applications are available free of charge from Wolfram Research. ***********************************************************************) (*CacheID: 232*) (*NotebookFileLineBreakTest NotebookFileLineBreakTest*) (*NotebookOptionsPosition[ 21025, 648]*) (*NotebookOutlinePosition[ 21696, 672]*) (* CellTagsIndexPosition[ 21652, 668]*) (*WindowFrame->Normal*) Notebook[{ Cell["\<\ Examples for Section 8.6 The Ratio and Root Tests for Series\ \>", "Subsection"], Cell[CellGroupData[{ Cell["p. 654", "Subsection"], Cell[CellGroupData[{ Cell["1.", "Subsubsection"], Cell[TextData[{ Cell[BoxData[ FormBox[ RowBox[{ UnderoverscriptBox["\[Sum]", \(n = 1\), StyleBox["\[Infinity]", "Input"]], \(n\^\(\@2\)\/2\^n\)}], TraditionalForm]]], ". Let us try the ratio test: ", Cell[BoxData[ FormBox[ RowBox[{\(lim\_\(n \[Rule] \[Infinity]\)\ a\_\(n + 1\)/a\_n\), "=", RowBox[{ RowBox[{\(lim\_\(n \[Rule] \[Infinity]\)\), RowBox[{\(\((n + 1)\)\^\(\@2\)\/2\^\(n + 1\)\), "/", FormBox[\(n\^\(\@2\)\/2\^n\), "TraditionalForm"]}]}], "=", RowBox[{ RowBox[{\(lim\_\(n \[Rule] \[Infinity]\)\), RowBox[{\(1\/2\), \(\((1 + 1\/n)\)\^\(\@2\)\), FormBox["", "TraditionalForm"]}]}], "=", \(1\/2\)}]}]}], TraditionalForm]]], ".\nSince the limit is less than 1, the series converges." }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(Limit[\(\((n + 1)\)\^\(\@2\)\/2\^\(n + 1\)\)/\(n\^\(\@2\)\/2\^n\), n \[Rule] \[Infinity]]\)], "Input"], Cell[BoxData[ \(1\/2\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(NSum[n\^\(\@2\)\/2\^n, {n, 1, \[Infinity]}]\)], "Input"], Cell[BoxData[ \(3.00091573849082937`\)], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["9.", "Subsubsection"], Cell[TextData[{ Cell[BoxData[ \(TraditionalForm \`\[Sum]\+\(n = 1\)\%\[Infinity]\((1\ - \ 3\/n)\)\^n\)]], ". The root test gives: ", Cell[BoxData[ \(TraditionalForm \`\(lim\_\(n \[Rule] \[Infinity]\)\((a\_n)\)\^\(1/n\) = \(lim\_\(n \[Rule] \[Infinity]\)\((1\ - \ 3\/n)\) = 1\)\ \)\)]], " which is inconclusive. However, we should note that the terms of the \ series do not approach 0: ", Cell[BoxData[ FormBox[ RowBox[{ RowBox[{ FormBox[\(lim\_\(n \[Rule] \[Infinity]\)\((1 - 3\/n)\)\^n = \), "TraditionalForm"], \(e\^\(lim\_\(n \[Rule] \[Infinity]\)n\ \(ln(1 - 3\/n)\)\)\)}], "=", \(e\^\(-3\)\)}], TraditionalForm]]], "(by L'Hopital's Rule). Therefore, the series diverges." }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(Limit[\((1 - 3\/n)\)\^n, n \[Rule] \[Infinity]]\)], "Input"], Cell[BoxData[ \(1\/E\^3\)], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["11.", "Subsubsection"], Cell[TextData[{ Cell[BoxData[ \(TraditionalForm\`\[Sum]\+\(n = 1\)\%\[Infinity]\( ln(n)\)\/3\^n\)]], ". The root test reveals: ", Cell[BoxData[ \(TraditionalForm \`lim\_\(n \[Rule] \[Infinity]\)\((\(ln(n)\)\/3\^n)\)\^\(1/n\) = \(\(1\/3\) \(lim\_\(n \[Rule] \[Infinity]\)\((ln(n))\)\^\(1/n\)\) = \(\(1\/3\) \(lim\_\(n \[Rule] \[Infinity]\)e\^\(\(ln(ln(n))\)/n\)\) = 1\/3\)\)\)]], "(by L'Hopital's Rule). So the series converges." }], "Text"], Cell[CellGroupData[{ Cell[BoxData[ \(Limit[\(1\/3\) Log[n]\^\(1/n\), n \[Rule] \[Infinity]]\)], "Input"], Cell[BoxData[ \(1\/3\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(NSum[Log[n]\/3\^n, {n, 1, \[Infinity]}]\)], "Input"], Cell[BoxData[ \(0.145279461815701154`\)], "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell["27.", "Subsubsection"], Cell[TextData[{ "Consider the series ", Cell[BoxData[ \(TraditionalForm\`\[Sum]\+\(n = 1\)\%\[Infinity] a\_n\)]], " whose terms are defined recursively by ", Cell[BoxData[ \(TraditionalForm\`a\_1 = 2\)]], ", ", Cell[BoxData[ \(TraditionalForm\`a\_\(n + 1\) = \ \(\(1 + sin(n)\)\/n\) a\_n\)]], ". The ratio test provides an easy method to determine convergence: ", Cell[BoxData[ \(TraditionalForm \`lim\_\(n \[Rule] \[Infinity]\)a\_\(n + 1\)/a\_n = \ \(lim\_\(n \[Rule] \[Infinity]\)\(1 + sin(n)\)\/n = 0\)\)]], " . Therefore, the series converges." }], "Text"], Cell[BoxData[ \(a[1] = 2.0; \ a[n_]\ := \ \(\(1.0 + Sin[n]\)\/n\) a[n - 1]\)], "Input"], Cell[BoxData[ \(s[k_]\ := \ \[Sum]\+\(n = 1\)\%k a[n]\)], "Input"], Cell[BoxData[ \(\(z\ = \ Table[s[k], {k, 1, 15}]; \)\)], "Input"], Cell[CellGroupData[{ Cell[BoxData[ \(ListPlot[z, PlotRange \[Rule] {{0, 15}, {0, 5}}]\)], "Input"], Cell[GraphicsData["PostScript", "\<\ %! %%Creator: Mathematica %%AspectRatio: .61803 MathPictureStart /Mabs { Mgmatrix idtransform Mtmatrix dtransform } bind def /Mabsadd { Mabs 3 -1 roll add 3 1 roll add exch } bind def %% Graphics %%IncludeResource: font Courier %%IncludeFont: Courier /Courier findfont 10 scalefont setfont % Scaling calculations 6.93889e-18 0.0666667 0 0.123607 [ [.13333 -0.0125 -3 -9 ] [.13333 -0.0125 3 0 ] [.26667 -0.0125 -3 -9 ] [.26667 -0.0125 3 0 ] [.4 -0.0125 -3 -9 ] [.4 -0.0125 3 0 ] [.53333 -0.0125 -3 -9 ] [.53333 -0.0125 3 0 ] [.66667 -0.0125 -6 -9 ] [.66667 -0.0125 6 0 ] [.8 -0.0125 -6 -9 ] [.8 -0.0125 6 0 ] [.93333 -0.0125 -6 -9 ] [.93333 -0.0125 6 0 ] [-0.0125 .12361 -6 -4.5 ] [-0.0125 .12361 0 4.5 ] [-0.0125 .24721 -6 -4.5 ] [-0.0125 .24721 0 4.5 ] [-0.0125 .37082 -6 -4.5 ] [-0.0125 .37082 0 4.5 ] [-0.0125 .49443 -6 -4.5 ] [-0.0125 .49443 0 4.5 ] [-0.0125 .61803 -6 -4.5 ] [-0.0125 .61803 0 4.5 ] [ 0 0 0 0 ] [ 1 .61803 0 0 ] ] MathScale % Start of Graphics 1 setlinecap 1 setlinejoin newpath 0 g .25 Mabswid [ ] 0 setdash .13333 0 m .13333 .00625 L s [(2)] .13333 -0.0125 0 1 Mshowa .26667 0 m .26667 .00625 L s [(4)] .26667 -0.0125 0 1 Mshowa .4 0 m .4 .00625 L s [(6)] .4 -0.0125 0 1 Mshowa .53333 0 m .53333 .00625 L s [(8)] .53333 -0.0125 0 1 Mshowa .66667 0 m .66667 .00625 L s [(10)] .66667 -0.0125 0 1 Mshowa .8 0 m .8 .00625 L s [(12)] .8 -0.0125 0 1 Mshowa .93333 0 m .93333 .00625 L s [(14)] .93333 -0.0125 0 1 Mshowa .125 Mabswid .03333 0 m .03333 .00375 L s .06667 0 m .06667 .00375 L s .1 0 m .1 .00375 L s .16667 0 m .16667 .00375 L s .2 0 m .2 .00375 L s .23333 0 m .23333 .00375 L s .3 0 m .3 .00375 L s .33333 0 m .33333 .00375 L s .36667 0 m .36667 .00375 L s .43333 0 m .43333 .00375 L s .46667 0 m .46667 .00375 L s .5 0 m .5 .00375 L s .56667 0 m .56667 .00375 L s .6 0 m .6 .00375 L s .63333 0 m .63333 .00375 L s .7 0 m .7 .00375 L s .73333 0 m .73333 .00375 L s .76667 0 m .76667 .00375 L s .83333 0 m .83333 .00375 L s .86667 0 m .86667 .00375 L s .9 0 m .9 .00375 L s .96667 0 m .96667 .00375 L s .25 Mabswid 0 0 m 1 0 L s 0 .12361 m .00625 .12361 L s [(1)] -0.0125 .12361 1 0 Mshowa 0 .24721 m .00625 .24721 L s [(2)] -0.0125 .24721 1 0 Mshowa 0 .37082 m .00625 .37082 L s [(3)] -0.0125 .37082 1 0 Mshowa 0 .49443 m .00625 .49443 L s [(4)] -0.0125 .49443 1 0 Mshowa 0 .61803 m .00625 .61803 L s [(5)] -0.0125 .61803 1 0 Mshowa .125 Mabswid 0 .02472 m .00375 .02472 L s 0 .04944 m .00375 .04944 L s 0 .07416 m .00375 .07416 L s 0 .09889 m .00375 .09889 L s 0 .14833 m .00375 .14833 L s 0 .17305 m .00375 .17305 L s 0 .19777 m .00375 .19777 L s 0 .22249 m .00375 .22249 L s 0 .27193 m .00375 .27193 L s 0 .29666 m .00375 .29666 L s 0 .32138 m .00375 .32138 L s 0 .3461 m .00375 .3461 L s 0 .39554 m .00375 .39554 L s 0 .42026 m .00375 .42026 L s 0 .44498 m .00375 .44498 L s 0 .46971 m .00375 .46971 L s 0 .51915 m .00375 .51915 L s 0 .54387 m .00375 .54387 L s 0 .56859 m .00375 .56859 L s 0 .59331 m .00375 .59331 L s .25 Mabswid 0 0 m 0 .61803 L s 0 0 m 1 0 L 1 .61803 L 0 .61803 L closepath clip newpath .008 w .06667 .24721 Mdot .13333 .48322 Mdot .2 .57298 Mdot .26667 .57844 Mdot .33333 .57849 Mdot .4 .57849 Mdot .46667 .57849 Mdot .53333 .57849 Mdot .6 .57849 Mdot .66667 .57849 Mdot .73333 .57849 Mdot .8 .57849 Mdot .86667 .57849 Mdot .93333 .57849 Mdot 1 .57849 Mdot % End of Graphics MathPictureEnd \ \>"], "Graphics", ImageSize->{288, 177.938}, ImageMargins->{{62, 0}, {0, 0}}, ImageRegion->{{0, 1}, {0, 1}}, ImageCache->GraphicsData["Bitmap", "\<\ CF5dJ6E]HGAYHf4PAg9QL6QYHg0?ooo`800000n`3oool000X0oooo00<000000?ooo`3oool01@3oool3000000l0oooo 00<000000?ooo`3oool0n@3oool000/0oooo00<000000?ooo`3oool0103oool00`000000oooo0?oo o`3o0?ooo``0oooo000<0?ooo`030000003oool0oooo00<0oooo00<000000?ooo`3oool0o`3oool< 0?ooo`003@3oool00`000000oooo0?ooo`020?ooo`030000003oool0oooo0?l0oooo303oool000X0 oooo00@000000?ooo`3oool00000103oool00`000000oooo0?ooo`3o0?ooo``0oooo000;0?ooo`80 00001@3oool00`000000oooo0?ooo`3o0?ooo``0oooo000B0?ooo`800000o`3oool=0?ooo`004P3o ool00`000000oooo0?ooo`3o0?ooo``0oooo000B0?ooo`030000003oool0oooo0?l0oooo303oool0 0180oooo00<000000?ooo`3oool0o`3oool<0?ooo`004P3oool00`000000oooo0?ooo`3o0?ooo``0 oooo000B0?ooo`030000003oool0oooo0?l0oooo303oool00180oooo00<000000?ooo`3oool0o`3o ool<0?ooo`004P3oool200000?l0oooo3@3oool00180oooo00<000000?ooo`3oool0o`3oool<0?oo o`004P3oool00`000000oooo0?ooo`3o0?ooo``0oooo000B0?ooo`030000003oool0oooo0?l0oooo 303oool00180oooo00<000000?ooo`3oool0o`3oool<0?ooo`004P3oool00`000000oooo0?ooo`3o 0?ooo``0oooo000B0?ooo`800000o`3oool=0?ooo`004P3oool00`000000oooo0?ooo`3o0?ooo``0 oooo000B0?ooo`030000003oool0oooo0?l0oooo303oool00180oooo00<000000?ooo`3oool0o`3o ool<0?ooo`004P3oool00`000000oooo0?ooo`3o0?ooo``0oooo000B0?ooo`030000003oool0oooo 0?l0oooo303oool00180oooo00<000000?ooo`3oool0o`3oool<0?ooo`004P3oool200000?l0oooo 3@3oool00180oooo00<000000?ooo`3oool0o`3oool<0?ooo`004P3oool00`000000oooo0?ooo`3o 0?ooo``0oooo000B0?ooo`030000003oool0oooo0?l0oooo303oool00180oooo00<000000?ooo`3o ool0o`3oool<0?ooo`002`3oool2000000D0oooo00<000000?ooo`3oool0o`3oool<0?ooo`002P3o ool010000000oooo0?ooo`0000040?ooo`<00000o`3oool<0?ooo`003@3oool00`000000oooo0?oo o`020?ooo`030000003oool0oooo0?l0oooo303oool000/0oooo0P0000050?ooo`030000003oool0 oooo0?l0oooo303oool000d0oooo00<000000?ooo`3oool00P3oool00`000000oooo0?ooo`3o0?oo o``0oooo000:0?ooo`040000003oool0oooo000000@0oooo00<000000?ooo`3oool0o`3oool<0?oo o`002`3oool2000000D0oooo00<000000?ooo`3oool0o`3oool<0?ooo`004P3oool200000?l0oooo 3@3oool00180oooo00<000000?ooo`3oool0o`3oool<0?ooo`004P3oool00`000000oooo0?ooo`3o 0?ooo``0oooo000B0?ooo`030000003oool0oooo0?l0oooo303oool00180oooo00<000000?ooo`3o ool0o`3oool<0?ooo`004P3oool00`000000oooo0?ooo`3o0?ooo``0oooo000B0?ooo`030000003o ool0oooo0?l0oooo303oool00180oooo0P00003o0?ooo`d0oooo000B0?ooo`030000003oool0oooo 0?l0oooo303oool00180oooo00<000000?ooo`3oool0o`3oool<0?ooo`004P3oool00`000000oooo 0?ooo`3o0?ooo``0oooo000B0?ooo`030000003oool0oooo0?l0oooo303oool00180oooo00<00000 0?ooo`3oool0o`3oool<0?ooo`004P3oool200000?l0oooo3@3oool00180oooo00<000000?ooo`3o ool0o`3oool<0?ooo`004P3oool00`000000oooo0?ooo`3o0?ooo``0oooo000B0?ooo`030000003o ool0oooo0?l0oooo303oool00180oooo00<000000?ooo`3oool0o`3oool<0?ooo`004P3oool00`00 0000oooo0?ooo`3o0?ooo``0oooo000B0?ooo`030000003oool0oooo0?l0oooo303oool00180oooo 0P00003o0?ooo`d0oooo000B0?ooo`030000003oool0oooo0?l0oooo303oool00180oooo00<00000 0?ooo`3oool0o`3oool<0?ooo`004P3oool00`000000oooo0?ooo`0O0?ooo`800000jP3oool00180 oooo00<000000?ooo`3oool0803oool00`000000oooo0?ooo`3X0?ooo`00303oool00`000000oooo 0?ooo`030?ooo`030000003oool0oooo0?l0oooo303oool000`0oooo00<000000?ooo`3oool00`3o ool300000?l0oooo303oool000T0oooo1@0000040?ooo`030000003oool0oooo0?l0oooo303oool0 00T0oooo00@000000?ooo`3oool000001@3oool00`000000oooo0?ooo`3o0?ooo``0oooo000:0?oo o`030000003oool0000000D0oooo00<000000?ooo`3oool0o`3oool<0?ooo`002`3oool2000000D0 oooo00<000000?ooo`3oool0o`3oool<0?ooo`00303oool00`000000oooo0?ooo`030?ooo`030000 003oool0oooo0?l0oooo303oool00180oooo0P00003o0?ooo`d0oooo000B0?ooo`030000003oool0 oooo0?l0oooo303oool00180oooo00<000000?ooo`3oool0o`3oool<0?ooo`004P3oool00`000000 oooo0?ooo`3o0?ooo``0oooo000B0?ooo`030000003oool0oooo0?l0oooo303oool00180oooo00<0 00000?ooo`3oool0o`3oool<0?ooo`004P3oool00`000000oooo0?ooo`3o0?ooo``0oooo000B0?oo o`800000o`3oool=0?ooo`004P3oool00`000000oooo0?ooo`3o0?ooo``0oooo000B0?ooo`030000 003oool0oooo0?l0oooo303oool00180oooo00<000000?ooo`3oool0o`3oool<0?ooo`004P3oool0 0`000000oooo0?ooo`3o0?ooo``0oooo000B0?ooo`030000003oool0oooo0?l0oooo303oool00180 oooo0P00003o0?ooo`d0oooo000B0?ooo`030000003oool0oooo0300oooo0P00003I0?ooo`004P3o ool00`000000oooo0?ooo`0a0?ooo`030000003oool0oooo00h0oooo0P00000?0?ooo`8000003`3o ool2000000l0oooo0P00000@0?ooo`8000003`3oool2000000l0oooo0P00000@0?ooo`8000003`3o ool2000000l0oooo0P00000?0?ooo`800000403oool2000000T0oooo000B0?ooo`030000003oool0 oooo04<0oooo00<000000?ooo`3oool03P3oool00`000000oooo0?ooo`0>0?ooo`030000003oool0 oooo00h0oooo00<000000?ooo`3oool03`3oool00`000000oooo0?ooo`0>0?ooo`030000003oool0 oooo00h0oooo00<000000?ooo`3oool03`3oool00`000000oooo0?ooo`0>0?ooo`030000003oool0 oooo00h0oooo00<000000?ooo`3oool03P3oool00`000000oooo0?ooo`0?0?ooo`030000003oool0 oooo00L0oooo000B0?ooo`030000003oool0oooo0?l0oooo303oool00180oooo00<000000?ooo`3o ool0o`3oool<0?ooo`004P3oool00`000000oooo0?ooo`3o0?ooo``0oooo000B0?ooo`800000o`3o ool=0?ooo`004P3oool00`000000oooo0?ooo`3o0?ooo``0oooo000B0?ooo`030000003oool0oooo 0?l0oooo303oool00180oooo00<000000?ooo`3oool0o`3oool<0?ooo`004P3oool00`000000oooo 0?ooo`3o0?ooo``0oooo000:0?ooo`<000001@3oool00`000000oooo0?ooo`3o0?ooo``0oooo000= 0?ooo`030000003oool0oooo0080oooo0`00003o0?ooo``0oooo000=0?ooo`030000003oool0oooo 0?l0oooo4@3oool000X0oooo0`00003o0?oooa@0oooo000:0?ooo`030000003oool0oooo0?l0oooo 503oool000X0oooo00<000000?ooo`3oool0o`3ooolD0?ooo`00\ \>"], ImageRangeCache->{{{0, 287}, {176.938, 0}} -> {-1.07163, -0.382056, 0.0578695, 0.0312115}}], Cell[BoxData[ TagBox[\(\[SkeletonIndicator] Graphics \[SkeletonIndicator]\), False, Editable->False]], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(s[10]\)], "Input"], Cell[BoxData[ \(4.68011815584089685`\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(s[100]\)], "Input"], Cell[BoxData[ \(4.68011815584091372`\)], "Output"] }, Open ]], Cell["The series converges to a number near 4.68012.", "Text"] }, Open ]] }, Open ]] }, FrontEndVersion->"X 3.0", ScreenRectangle->{{0, 1024}, {0, 768}}, ScreenStyleEnvironment->"Working", WindowSize->{559, 594}, WindowMargins->{{218, Automatic}, {Automatic, 31}} ] (*********************************************************************** Cached data follows. If you edit this Notebook file directly, not using Mathematica, you must remove the line containing CacheID at the top of the file. The cache data will then be recreated when you save this file from within Mathematica. ***********************************************************************) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[1709, 49, 90, 3, 62, "Subsection"], Cell[CellGroupData[{ Cell[1824, 56, 28, 0, 45, "Subsection"], Cell[CellGroupData[{ Cell[1877, 60, 27, 0, 42, "Subsubsection"], Cell[1907, 62, 941, 23, 100, "Text"], Cell[CellGroupData[{ Cell[2873, 89, 129, 2, 49, "Input"], Cell[3005, 93, 38, 1, 43, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[3080, 99, 76, 1, 49, "Input"], Cell[3159, 102, 54, 1, 27, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[3262, 109, 27, 0, 42, "Subsubsection"], Cell[3292, 111, 808, 20, 82, "Text"], Cell[CellGroupData[{ Cell[4125, 135, 80, 1, 44, "Input"], Cell[4208, 138, 41, 1, 43, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[4298, 145, 28, 0, 56, "Subsubsection"], Cell[4329, 147, 514, 12, 100, "Text"], Cell[CellGroupData[{ Cell[4868, 163, 87, 1, 61, "Input"], Cell[4958, 166, 38, 1, 54, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[5033, 172, 72, 1, 61, "Input"], Cell[5108, 175, 55, 1, 39, "Output"] }, Open ]] }, Open ]], Cell[CellGroupData[{ Cell[5212, 182, 28, 0, 56, "Subsubsection"], Cell[5243, 184, 617, 16, 124, "Text"], Cell[5863, 202, 92, 1, 63, "Input"], Cell[5958, 205, 71, 1, 71, "Input"], Cell[6032, 208, 70, 1, 39, "Input"], Cell[CellGroupData[{ Cell[6127, 213, 81, 1, 39, "Input"], Cell[6211, 216, 14311, 402, 186, 3404, 263, "GraphicsData", "PostScript", "Graphics"], Cell[20525, 620, 130, 3, 39, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[20692, 628, 38, 1, 39, "Input"], Cell[20733, 631, 54, 1, 39, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[20824, 637, 39, 1, 39, "Input"], Cell[20866, 640, 54, 1, 39, "Output"] }, Open ]], Cell[20935, 644, 62, 0, 32, "Text"] }, Open ]] }, Open ]] } ] *) (*********************************************************************** End of Mathematica Notebook file. ***********************************************************************)