Math 126: Calculus II Exam I September 30, 1999 Name:_______Section:_____ There are 5 problems worth a total of 80 points on 6 pages plus a page to be used as a scratch sheet. You start with 20 points. Unless otherwise noted, each part of a problem is worth the same number of points. Please read the questions carefully, especially the **bold** words. You may use a calculator if you wish. If you want partial credit on any problem, be sure to indicate **clearly** what you are doing. **Show your work** and **all** important steps. **No partial credit** will be given for any numerical answer that is not explained clearly. 1. (10 points) Compute the following limits. $$a) \lim_{x \to 0} \frac{\sin^{-1}(3x)}{x}$$ b) $$\lim_{x\to 0} \frac{5-5\cos x}{e^x - x - 1}$$ Name:_____ 2. (20 points) In each part of this problem you are presented with two functions f(x) and g(x) and you are to decide which of the following three possibilities holds as $x \to \infty$. i) f(x) grows faster than g(x), ii) g(x) grows faster than f(x), iii) f(x) and g(x) grow at the same rate. Write the answer as i), ii), or iii); if the answer is iii) you must also give $\lim_{x\to\infty} \frac{f(x)}{g(x)}$. THINK! a) $f(x) = (\ln x)^2$ and $g(x) = 2^{\ln x}$. Ans. a) _____ b) $f(x) = \frac{1}{x}$ and $g(x) = \cos(\tan^{-1} x)$. Ans. b) _____ c) $f(x) = \tan^{-1}(x^2)$ and $g(x) = (\tan^{-1} x)^2$. Ans. c) _____ d) f(x) = x and $g(x) = \cosh(\ln x)$ Ans. d) _____ | Name: | | | |-------|--|--| | | | | 3. (15 points) Radioactive radon gas has a half-life of 3.85 days. A leaky basement of a house has a dangerous 30 picocuries of radioactive radon per liter of air. After the leaks are repaired how long will it take for the air in the basement to get down to a safe 4 picocuries of radioactive radon per liter? (*Remember:* The half-life of a radioactive element is the time required for half of the radioactive nuclei present in the sample to decay.) Name:____ 4. (10 points) Solve the differential equation $\frac{dy}{dx} = e^{x-y}$. 5. (25 points, 5 points each for the first three parts, 10 points for the last part) Compute the following integrals. a) $$\int_1^4 \frac{1}{\sqrt{x} + x} \, dx$$ $$b) \int \frac{e^x}{1 + 4e^{2x}} \, dx$$ Name:____ $$c) \int_0^{\pi/2} x^2 \sin(x) \, dx$$ $$d) \int \frac{2x}{\sqrt{6x - x^2}} \, dx$$