Math 126: Calculus II
Exam II November 11, 1999

Name:
Section:
\qquad
There are 7 problems worth a total of 80 points on 7 pages plus a page to be used as a scratch sheet. You start with 20 points. Unless otherwise noted, each part of a problem is worth the same number of points.
Please read the questions carefully, especially the bold words.
You may use a calculator if you wish.
If you want partial credit on any problem, be sure to indicate clearly what you are doing. Show your work and all important steps. No partial credit will be given for any numerical answer that is not explained clearly.

1. (10 pts) Give the partial fraction decomposition of $\frac{x^{2}-2 x+2}{x^{3}-2 x^{2}+x}$.

Name:
2. (10 pts) Use a trigonometric substitution to integrate $\int \frac{x^{2}}{\left(x^{2}+1\right)^{5 / 2}} d x$.
3. (12 pts) Improper Integrals.
(a) Evaluate $\int_{0}^{\infty} x e^{-x^{2}} d x$
(b) Determine whether the integral $\int_{1}^{\infty} \frac{\sqrt{x^{2}+1}}{x^{2}} d x$ converges.
4. (12 pts) Infinite Series.
(a) Evaluate $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)$.
(b) Suppose $a_{1}=3, a_{2}=2$, and for any $N>2$,

$$
\sum_{n=1}^{N} a_{n}=\frac{N-3 \sqrt{N}}{2 N+\sqrt{N}}
$$

What is $\sum_{n=3}^{\infty} a_{n}$? (Note: The range of indices in the question is $n=3$ to ∞.)

Name:
5. (18 pts) Determine whether the following series converge.
(a) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{3}+5 n-4}}$.
(b) $\sum_{n=1}^{\infty} \frac{n!}{(2 n-1)!}$
(c) $\sum_{n=2}^{\infty} \frac{1}{(\ln (n))^{n}}$
6. (6 pts) Determine whether the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n^{2}+1}{n^{3}}$ converges absolutely, converges conditionally, or diverges.
7. (12 pts)
(a) Find the interval of convergence of the power series:

$$
\sum_{n=1}^{\infty} \frac{(x+1)^{n}}{2^{n}}
$$

(b) Find the Taylor polynomial of order 3 for $f(x)=\ln (2-x)$ at $x=1$.

Name:

