Math 126: Calculus II
Name:
Quiz 9 November 16, 1999

Suppose you are required to use Taylor's formula to calculate e^{2} with an error less than 10^{-10}. You know $e<3$, and you have the following information:

$$
\begin{gathered}
10^{-9}>\frac{2^{17}}{17!}>10^{-10}>\frac{2^{18}}{18!}>10^{-11}>\frac{2^{19}}{19!}>10^{-12}>\frac{2^{20}}{20!} \\
10^{-8}>\frac{9 \cdot 2^{17}}{17!}>10^{-9}>\frac{9 \cdot 2^{18}}{18!}>10^{-10}>\frac{9 \cdot 2^{19}}{19!}>10^{-11}>\frac{9 \cdot 2^{20}}{20!}
\end{gathered}
$$

What is the smallest number of terms (the smallest n) to do the approximation ? (This requires estimating the remainder.) DO NOT actually carry out the calculation of e^{2}.

