[11pt]article graphicx amssymb epstopdf .tifpng.png'convert 1 'dirname 1'/'basename 1 .tif'.png = 6.5 in = 9 in = 0.0 in

 $theorem Theorem\ corollary [theorem] Corollary\ definition Definition$ 

document

## Math126, Test I February 9, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for two hours.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 13 pages of the test.

#### Good Luck!

| 1.  | (a) | (b) | (c) | (d) | (e) |
|-----|-----|-----|-----|-----|-----|
| 2.  | (a) | (b) | (c) | (d) | (e) |
| 3.  | (a) | (b) | (c) | (d) | (e) |
| 4.  | (a) | (b) | (c) | (d) | (e) |
| 5.  | (a) | (b) | (c) | (d) | (e) |
| 6.  | (a) | (b) | (c) | (d) | (e) |
| 7.  | (a) | (b) | (c) | (d) | (e) |
| 8.  | (a) | (b) | (c) | (d) | (e) |
| 9.  | (a) | (b) | (c) | (d) | (e) |
| 10. | (a) | (b) | (c) | (d) | (e) |
|     |     |     |     |     |     |

- 1.(5pts) Let  $f(x) = e^x + \ln x$  for x > 0. Find  $\frac{df^{-1}}{dx}(e)$ .

- (a)  $\frac{1}{e}$  (b) e (c)  $\frac{1}{e+1}$  (d) f is not one to one (e)  $(e^e + \frac{1}{e})^{-1}$ .
- 2.(5pts) Compute  $\int_{1}^{e^{\pi}} \frac{\sin(\ln x)}{x} dx$
- (a) 1
- (b) 2
- (c) -2
- (d) 0
- (e)  $\pi$
- 3.(5pts) Find the critical point(s) of  $f(x) = xe^x$  and determine whether they are local minima, maxima or neither.
- (a) x = 0, local max
- (b) no critical points (c) x = e neither

- (d) x = 1, local max (e) x = -1, local min
- 4.(5pts) Find all solutions of the equation  $\log_4(1+2x) = \log_2(3)$
- (a) no solutions
- (b) 4
- (c) 2
- (d) 1 (e) -2

- 5.(5pts) For x > 0 let  $f(x) = \int_1^{x^2} \frac{1}{t} dt$ . Find  $\frac{df}{dx}$ .

- (a)  $\frac{2}{x}$  (b)  $2x \ln x$  (c) f is not differentiable
- (e) 2x

- 6.(5pts) Calculate  $\lim_{x\to 3} \frac{x^2+9}{x^3+18}$ .
- (a)  $\frac{1}{5}$
- (b)  $\frac{2}{9}$  (c)  $\frac{1}{3}$
- (d)  $\frac{2}{5}$
- (e)  $\frac{2}{3}$

- 7.(5pts) Calculate  $\lim_{x \to 3} \frac{e^x e^3}{\ln(4 x)}$ .
- (a)  $-\infty$  (b)  $-e^3$
- (c)  $e^{-3}$
- (d)  $\infty$
- (e) 0

- 8.(5pts) Calculate  $\int_0^1 \frac{e^x}{e^{2x} + 1} dx$ .
- (a)  $\operatorname{arctan}(e) \frac{\pi}{4}$  (b)  $\ln(e^2 + 1) \ln(2)$  (c) 1 (d) 2 (e)  $\cot(e^2 + 1) \cot(2)$

- 9.(5pts) Calculate  $\frac{d}{dx} \arcsin(x^2)$
- (a)  $\frac{2}{x\sqrt{1-x^4}}$  (b)  $\frac{x^2}{1+x^2}$  (c)  $\frac{2x}{\sqrt{1-x^4}}$  (d)  $\frac{1}{\sqrt{1-x^4}}$  (e)  $\frac{2x}{\sqrt{1-x^2}}$

- 10.(5pts) Calculate  $\int_{-3}^{-2} \frac{dx}{x\sqrt{x^2-1}}$ .
- (a) 7

- (b)  $\arcsin(3) \arcsin(2)$  (c)  $\arctan(-2) \arctan(-3)$

(e) arcsec(2) - arcsec(3)

Partial Credit

- a) Show that f is one to one on the domain  $(0, \infty)$ .
- b) Find the slope of the tangent line to the graph of the inverse function  $f^{-1}$  at the point  $(\sqrt{10},3)$ .
  - 12.(10pts) Find the derivative of the function

$$f(x) = \sqrt[3]{\frac{(x^2 - 1)^4 e^{\sin x}}{(x+1)^5}} \quad .$$

14.(10pts) Calculate 
$$\lim_{x \to -\infty} \left(1 + \frac{x^2}{2}\right)^{\frac{1}{x^2}}$$
.

15.(10pts) Students sometimes feel that functions described by expressions like

 $F(x) = \begin{cases} 0 & x \ge 0 \\ x^2 & x < 0 \end{cases}$  are not very natural. Consider the function

$$f(t) = \arcsin\left(\frac{t^2 - 1}{t^2 + 1}\right) - 2 \arctan t$$
.

- a) Show that f(t) is constant for  $t \geq 0$ .
- b) Show f(t) is not constant for t < 0.

## Math126, Test I February 9, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for two hours.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 13 pages of the test.

#### Good Luck!

| 1.  | (a) | (b) | (c) | (d) | (e) |
|-----|-----|-----|-----|-----|-----|
| 2.  | (a) | (b) | (c) | (d) | (e) |
| 3.  | (a) | (b) | (c) | (d) | (e) |
| 4.  | (a) | (b) | (c) | (d) | (e) |
| 5.  | (a) | (b) | (c) | (d) | (e) |
| 6.  | (a) | (b) | (c) | (d) | (e) |
| 7.  | (a) | (b) | (c) | (d) | (e) |
| 8.  | (a) | (b) | (c) | (d) | (e) |
| 9.  | (a) | (b) | (c) | (d) | (e) |
| 10. | (a) | (b) | (c) | (d) | (e) |
|     |     |     |     |     |     |

- 1.(5pts) Let  $f(x) = e^x + \ln x$  for x > 0. Find  $\frac{df^{-1}}{dx}(e)$ .

- (a)  $\frac{1}{e}$  (b) e (c)  $\frac{1}{e+1}$  (d) f is not one to one (e)  $(e^e + \frac{1}{e})^{-1}$ .
- 2.(5pts) Compute  $\int_{1}^{e^{\pi}} \frac{\sin(\ln x)}{x} dx$
- (a) 1
- (b) 2
- (c) -2
- (d) 0
- (e)  $\pi$
- 3.(5pts) Find the critical point(s) of  $f(x) = xe^x$  and determine whether they are local minima, maxima or neither.
- (a) x = 0, local max
- (b) no critical points (c) x = e neither

- (d) x = 1, local max (e) x = -1, local min
- 4.(5pts) Find all solutions of the equation  $\log_4(1+2x) = \log_2(3)$
- (a) no solutions
- (b) 4
- (c) 2
- (d) 1 (e) -2

- 5.(5pts) For x > 0 let  $f(x) = \int_1^{x^2} \frac{1}{t} dt$ . Find  $\frac{df}{dx}$ .

- (a)  $\frac{2}{x}$  (b)  $2x \ln x$  (c) f is not differentiable
- (e) 2x

- 6.(5pts) Calculate  $\lim_{x\to 3} \frac{x^2+9}{x^3+18}$ .
- (a)  $\frac{1}{5}$
- (b)  $\frac{2}{9}$  (c)  $\frac{1}{3}$
- (d)  $\frac{2}{5}$
- (e)  $\frac{2}{3}$

- 7.(5pts) Calculate  $\lim_{x \to 3} \frac{e^x e^3}{\ln(4 x)}$ .
- (a)  $-\infty$  (b)  $-e^3$
- (c)  $e^{-3}$
- (d)  $\infty$
- (e) 0

- 8.(5pts) Calculate  $\int_0^1 \frac{e^x}{e^{2x} + 1} dx$ .
- (a)  $\operatorname{arctan}(e) \frac{\pi}{4}$  (b)  $\ln(e^2 + 1) \ln(2)$  (c) 1 (d) 2 (e)  $\cot(e^2 + 1) \cot(2)$

- 9.(5pts) Calculate  $\frac{d}{dx} \arcsin(x^2)$
- (a)  $\frac{2}{x\sqrt{1-x^4}}$  (b)  $\frac{x^2}{1+x^2}$  (c)  $\frac{2x}{\sqrt{1-x^4}}$  (d)  $\frac{1}{\sqrt{1-x^4}}$  (e)  $\frac{2x}{\sqrt{1-x^2}}$

- 10.(5pts) Calculate  $\int_{-3}^{-2} \frac{dx}{x\sqrt{x^2-1}}$ .
- (a) 7

- (b)  $\arcsin(3) \arcsin(2)$  (c)  $\arctan(-2) \arctan(-3)$

(e) arcsec(2) - arcsec(3)

Partial Credit

- a) Show that f is one to one on the domain  $(0, \infty)$ .
- b) Find the slope of the tangent line to the graph of the inverse function  $f^{-1}$  at the point  $(\sqrt{10},3)$ .
  - 12.(10pts) Find the derivative of the function

$$f(x) = \sqrt[3]{\frac{(x^2 - 1)^4 e^{\sin x}}{(x+1)^5}} \quad .$$

14.(10pts) Calculate 
$$\lim_{x \to -\infty} \left(1 + \frac{x^2}{2}\right)^{\frac{1}{x^2}}$$
.

15.(10pts) Students sometimes feel that functions described by expressions like

 $F(x) = \begin{cases} 0 & x \ge 0 \\ x^2 & x < 0 \end{cases}$  are not very natural. Consider the function

$$f(t) = \arcsin\left(\frac{t^2 - 1}{t^2 + 1}\right) - 2 \arctan t$$
.

- a) Show that f(t) is constant for  $t \geq 0$ .
- b) Show f(t) is not constant for t < 0.

## Math126, Test I February 9, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for two hours.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 13 pages of the test.

#### Good Luck!

| 1.  | (a) | (b) | (c) | (d) | (e) |
|-----|-----|-----|-----|-----|-----|
| 2.  | (a) | (b) | (c) | (d) | (e) |
| 3.  | (a) | (b) | (c) | (d) | (e) |
| 4.  | (a) | (b) | (c) | (d) | (e) |
| 5.  | (a) | (b) | (c) | (d) | (e) |
| 6.  | (a) | (b) | (c) | (d) | (e) |
| 7.  | (a) | (b) | (c) | (d) | (e) |
| 8.  | (a) | (b) | (c) | (d) | (e) |
| 9.  | (a) | (b) | (c) | (d) | (e) |
| 10. | (a) | (b) | (c) | (d) | (e) |
|     |     |     |     |     |     |

- 1.(5pts) Let  $f(x) = e^x + \ln x$  for x > 0. Find  $\frac{df^{-1}}{dx}(e)$ .

- (a)  $\frac{1}{e}$  (b) e (c)  $\frac{1}{e+1}$  (d) f is not one to one (e)  $(e^e + \frac{1}{e})^{-1}$ .
- 2.(5pts) Compute  $\int_{1}^{e^{\pi}} \frac{\sin(\ln x)}{x} dx$
- (a) 1
- (b) 2
- (c) -2
- (d) 0
- (e)  $\pi$
- 3.(5pts) Find the critical point(s) of  $f(x) = xe^x$  and determine whether they are local minima, maxima or neither.
- (a) x = 0, local max
- (b) no critical points (c) x = e neither

- (d) x = 1, local max (e) x = -1, local min
- 4.(5pts) Find all solutions of the equation  $\log_4(1+2x) = \log_2(3)$
- (a) no solutions
- (b) 4
- (c) 2
- (d) 1 (e) -2

- 5.(5pts) For x > 0 let  $f(x) = \int_1^{x^2} \frac{1}{t} dt$ . Find  $\frac{df}{dx}$ .

- (a)  $\frac{2}{x}$  (b)  $2x \ln x$  (c) f is not differentiable
- (e) 2x

- 6.(5pts) Calculate  $\lim_{x\to 3} \frac{x^2+9}{x^3+18}$ .
- (a)  $\frac{1}{5}$
- (b)  $\frac{2}{9}$  (c)  $\frac{1}{3}$
- (d)  $\frac{2}{5}$
- (e)  $\frac{2}{3}$

- 7.(5pts) Calculate  $\lim_{x \to 3} \frac{e^x e^3}{\ln(4 x)}$ .
- (a)  $-\infty$  (b)  $-e^3$
- (c)  $e^{-3}$
- (d)  $\infty$
- (e) 0

- 8.(5pts) Calculate  $\int_0^1 \frac{e^x}{e^{2x} + 1} dx$ .
- (a)  $\operatorname{arctan}(e) \frac{\pi}{4}$  (b)  $\ln(e^2 + 1) \ln(2)$  (c) 1 (d) 2 (e)  $\cot(e^2 + 1) \cot(2)$

- 9.(5pts) Calculate  $\frac{d}{dx} \arcsin(x^2)$
- (a)  $\frac{2}{x\sqrt{1-x^4}}$  (b)  $\frac{x^2}{1+x^2}$  (c)  $\frac{2x}{\sqrt{1-x^4}}$  (d)  $\frac{1}{\sqrt{1-x^4}}$  (e)  $\frac{2x}{\sqrt{1-x^2}}$

- 10.(5pts) Calculate  $\int_{-3}^{-2} \frac{dx}{x\sqrt{x^2-1}}$ .
- (a) 7

- (b)  $\arcsin(3) \arcsin(2)$  (c)  $\arctan(-2) \arctan(-3)$

(e) arcsec(2) - arcsec(3)

Partial Credit

- a) Show that f is one to one on the domain  $(0, \infty)$ .
- b) Find the slope of the tangent line to the graph of the inverse function  $f^{-1}$  at the point  $(\sqrt{10},3)$ .
  - 12.(10pts) Find the derivative of the function

$$f(x) = \sqrt[3]{\frac{(x^2 - 1)^4 e^{\sin x}}{(x+1)^5}} \quad .$$

14.(10pts) Calculate 
$$\lim_{x \to -\infty} \left(1 + \frac{x^2}{2}\right)^{\frac{1}{x^2}}$$
.

15.(10pts) Students sometimes feel that functions described by expressions like

 $F(x) = \begin{cases} 0 & x \ge 0 \\ x^2 & x < 0 \end{cases}$  are not very natural. Consider the function

$$f(t) = \arcsin\left(\frac{t^2 - 1}{t^2 + 1}\right) - 2 \arctan t$$
.

- a) Show that f(t) is constant for  $t \geq 0$ .
- b) Show f(t) is not constant for t < 0.

## Math126, Test I February 9, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for two hours.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 13 pages of the test.

#### Good Luck!

| 1.  | (a) | (b) | (c) | (d) | (e) |
|-----|-----|-----|-----|-----|-----|
| 2.  | (a) | (b) | (c) | (d) | (e) |
| 3.  | (a) | (b) | (c) | (d) | (e) |
| 4.  | (a) | (b) | (c) | (d) | (e) |
| 5.  | (a) | (b) | (c) | (d) | (e) |
| 6.  | (a) | (b) | (c) | (d) | (e) |
| 7.  | (a) | (b) | (c) | (d) | (e) |
| 8.  | (a) | (b) | (c) | (d) | (e) |
| 9.  | (a) | (b) | (c) | (d) | (e) |
| 10. | (a) | (b) | (c) | (d) | (e) |
|     |     |     |     |     |     |

- 1.(5pts) Let  $f(x) = e^x + \ln x$  for x > 0. Find  $\frac{df^{-1}}{dx}(e)$ .

- (a)  $\frac{1}{e}$  (b) e (c)  $\frac{1}{e+1}$  (d) f is not one to one (e)  $(e^e + \frac{1}{e})^{-1}$ .
- 2.(5pts) Compute  $\int_{1}^{e^{\pi}} \frac{\sin(\ln x)}{x} dx$
- (a) 1
- (b) 2
- (c) -2
- (d) 0
- (e)  $\pi$
- 3.(5pts) Find the critical point(s) of  $f(x) = xe^x$  and determine whether they are local minima, maxima or neither.
- (a) x = 0, local max
- (b) no critical points (c) x = e neither

- (d) x = 1, local max (e) x = -1, local min
- 4.(5pts) Find all solutions of the equation  $\log_4(1+2x) = \log_2(3)$
- (a) no solutions
- (b) 4
- (c) 2
- (d) 1 (e) -2

- 5.(5pts) For x > 0 let  $f(x) = \int_1^{x^2} \frac{1}{t} dt$ . Find  $\frac{df}{dx}$ .

- (a)  $\frac{2}{x}$  (b)  $2x \ln x$  (c) f is not differentiable
- (e) 2x

- 6.(5pts) Calculate  $\lim_{x\to 3} \frac{x^2+9}{x^3+18}$ .
- (a)  $\frac{1}{5}$
- (b)  $\frac{2}{9}$  (c)  $\frac{1}{3}$
- (d)  $\frac{2}{5}$
- (e)  $\frac{2}{3}$

- 7.(5pts) Calculate  $\lim_{x \to 3} \frac{e^x e^3}{\ln(4 x)}$ .
- (a)  $-\infty$  (b)  $-e^3$
- (c)  $e^{-3}$
- (d)  $\infty$
- (e) 0

- 8.(5pts) Calculate  $\int_0^1 \frac{e^x}{e^{2x} + 1} dx$ .
- (a)  $\operatorname{arctan}(e) \frac{\pi}{4}$  (b)  $\ln(e^2 + 1) \ln(2)$  (c) 1 (d) 2 (e)  $\cot(e^2 + 1) \cot(2)$

- 9.(5pts) Calculate  $\frac{d}{dx} \arcsin(x^2)$
- (a)  $\frac{2}{x\sqrt{1-x^4}}$  (b)  $\frac{x^2}{1+x^2}$  (c)  $\frac{2x}{\sqrt{1-x^4}}$  (d)  $\frac{1}{\sqrt{1-x^4}}$  (e)  $\frac{2x}{\sqrt{1-x^2}}$

- 10.(5pts) Calculate  $\int_{-3}^{-2} \frac{dx}{x\sqrt{x^2-1}}$ .
- (a) 7

- (b)  $\arcsin(3) \arcsin(2)$  (c)  $\arctan(-2) \arctan(-3)$

(e) arcsec(2) - arcsec(3)

Partial Credit

- a) Show that f is one to one on the domain  $(0, \infty)$ .
- b) Find the slope of the tangent line to the graph of the inverse function  $f^{-1}$  at the point  $(\sqrt{10},3)$ .
  - 12.(10pts) Find the derivative of the function

$$f(x) = \sqrt[3]{\frac{(x^2 - 1)^4 e^{\sin x}}{(x+1)^5}} \quad .$$

14.(10pts) Calculate 
$$\lim_{x \to -\infty} \left(1 + \frac{x^2}{2}\right)^{\frac{1}{x^2}}$$
.

15.(10pts) Students sometimes feel that functions described by expressions like

 $F(x) = \begin{cases} 0 & x \ge 0 \\ x^2 & x < 0 \end{cases}$  are not very natural. Consider the function

$$f(t) = \arcsin\left(\frac{t^2 - 1}{t^2 + 1}\right) - 2 \arctan t$$
.

4

- a) Show that f(t) is constant for  $t \geq 0$ .
- b) Show f(t) is not constant for t < 0.

## Math126, Test I February 9, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for two hours.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 13 pages of the test.

#### Good Luck!

| 1.  | (a) | (b) | (c) | (d) | (e) |
|-----|-----|-----|-----|-----|-----|
| 2.  | (a) | (b) | (c) | (d) | (e) |
| 3.  | (a) | (b) | (c) | (d) | (e) |
| 4.  | (a) | (b) | (c) | (d) | (e) |
| 5.  | (a) | (b) | (c) | (d) | (e) |
| 6.  | (a) | (b) | (c) | (d) | (e) |
| 7.  | (a) | (b) | (c) | (d) | (e) |
| 8.  | (a) | (b) | (c) | (d) | (e) |
| 9.  | (a) | (b) | (c) | (d) | (e) |
| 10. | (a) | (b) | (c) | (d) | (e) |
|     |     |     |     |     |     |

- 1.(5pts) Let  $f(x) = e^x + \ln x$  for x > 0. Find  $\frac{df^{-1}}{dx}(e)$ .

- (a)  $\frac{1}{e}$  (b) e (c)  $\frac{1}{e+1}$  (d) f is not one to one (e)  $(e^e + \frac{1}{e})^{-1}$ .
- 2.(5pts) Compute  $\int_{1}^{e^{\pi}} \frac{\sin(\ln x)}{x} dx$
- (a) 1
- (b) 2
- (c) -2
- (d) 0
- (e)  $\pi$
- 3.(5pts) Find the critical point(s) of  $f(x) = xe^x$  and determine whether they are local minima, maxima or neither.
- (a) x = 0, local max
- (b) no critical points (c) x = e neither

- (d) x = 1, local max (e) x = -1, local min
- 4.(5pts) Find all solutions of the equation  $\log_4(1+2x) = \log_2(3)$
- (a) no solutions
- (b) 4
- (c) 2
- (d) 1 (e) -2

- 5.(5pts) For x > 0 let  $f(x) = \int_1^{x^2} \frac{1}{t} dt$ . Find  $\frac{df}{dx}$ .

- (a)  $\frac{2}{x}$  (b)  $2x \ln x$  (c) f is not differentiable
- (e) 2x

- 6.(5pts) Calculate  $\lim_{x\to 3} \frac{x^2+9}{x^3+18}$ .
- (a)  $\frac{1}{5}$
- (b)  $\frac{2}{9}$  (c)  $\frac{1}{3}$
- (d)  $\frac{2}{5}$
- (e)  $\frac{2}{3}$

- 7.(5pts) Calculate  $\lim_{x \to 3} \frac{e^x e^3}{\ln(4 x)}$ .
- (a)  $-\infty$  (b)  $-e^3$
- (c)  $e^{-3}$
- (d)  $\infty$
- (e) 0

- 8.(5pts) Calculate  $\int_0^1 \frac{e^x}{e^{2x} + 1} dx$ .
- (a)  $\operatorname{arctan}(e) \frac{\pi}{4}$  (b)  $\ln(e^2 + 1) \ln(2)$  (c) 1 (d) 2 (e)  $\cot(e^2 + 1) \cot(2)$

- 9.(5pts) Calculate  $\frac{d}{dx} \arcsin(x^2)$
- (a)  $\frac{2}{x\sqrt{1-x^4}}$  (b)  $\frac{x^2}{1+x^2}$  (c)  $\frac{2x}{\sqrt{1-x^4}}$  (d)  $\frac{1}{\sqrt{1-x^4}}$  (e)  $\frac{2x}{\sqrt{1-x^2}}$

- 10.(5pts) Calculate  $\int_{-3}^{-2} \frac{dx}{x\sqrt{x^2-1}}$ .
- (a) 7

- (b)  $\arcsin(3) \arcsin(2)$  (c)  $\arctan(-2) \arctan(-3)$

(e) arcsec(2) - arcsec(3)

Partial Credit

- a) Show that f is one to one on the domain  $(0, \infty)$ .
- b) Find the slope of the tangent line to the graph of the inverse function  $f^{-1}$  at the point  $(\sqrt{10},3)$ .
  - 12.(10pts) Find the derivative of the function

$$f(x) = \sqrt[3]{\frac{(x^2 - 1)^4 e^{\sin x}}{(x+1)^5}} \quad .$$

14.(10pts) Calculate 
$$\lim_{x \to -\infty} \left(1 + \frac{x^2}{2}\right)^{\frac{1}{x^2}}$$
.

15.(10pts) Students sometimes feel that functions described by expressions like

 $F(x) = \begin{cases} 0 & x \ge 0 \\ x^2 & x < 0 \end{cases}$  are not very natural. Consider the function

$$f(t) = \arcsin\left(\frac{t^2 - 1}{t^2 + 1}\right) - 2 \arctan t$$
.

4

- a) Show that f(t) is constant for  $t \geq 0$ .
- b) Show f(t) is not constant for t < 0.

| Name: |  |
|-------|--|
|       |  |

| $\operatorname{Instruc}$ | ctor-section: |
|--------------------------|---------------|
| 5th196                   | Tost I        |

Bullwinkle

Math126, Test I February 9, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for two hours.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 13 pages of the test.

Good Luck!

| 1.  | (a)     | (b)     | (ullet) | (d)     | (e)     |
|-----|---------|---------|---------|---------|---------|
| 2.  | (a)     | (ullet) | (c)     | (d)     | (e)     |
| 3.  | (a)     | (b)     | (c)     | (d)     | (ullet) |
| 4.  | (a)     | (ullet) | (c)     | (d)     | (e)     |
| 5.  | (ullet) | (b)     | (c)     | (d)     | (e)     |
| 6.  | (a)     | (b)     | (c)     | (ullet) | (e)     |
| 7.  | (a)     | (ullet) | (c)     | (d)     | (e)     |
| 8.  | (ullet) | (b)     | (c)     | (d)     | (e)     |
| 9.  | (a)     | (b)     | (ullet) | (d)     | (e)     |
| 10. | (a)     | (b)     | (c)     | (d)     | (ullet) |
|     |         |         |         |         |         |