
Math 126, Test III

April 20, 1999

Multiple Choice

Problem 1. 1) conditionally converges, 2) diverges

Solution. 1)
P1

n=1
(�1)n
n

is an alternating series, so it converges by the Leibniz's Theorem.

The corresponding series of absolute values is equal to
P1

n=1
1
n
. It diverges because it is the harmonic

series.

Hence
P1

n=1
(�1)n
n

conditionally converges.

2) Note

lim
n!1

p
n3 � 1

3n� 1
=1:

By the n-th Term Test,
P1

n=1

p
n3�1
3n�1 diverges.

Problem 2. 1

Solution. Let An = (x�5)n
nn

; i.e, An denotes the n-th term of the power series.

lim
n!1

���An+1

An

��� = lim
n!1

nn

(n+ 1)n+1
jx� 5j

= lim
n!1

1

n+ 1

nn

(n+ 1)n
jx� 5j

= lim
n!1

1

n+ 1

1�
1 + 1

n

�n jx� 5j

= lim
n!1

1

n+ 1
lim
n!1

1�
1 + 1

n

�n jx� 5j

= 0 � 1
e
� jx� 5j

= 0

for all x. By the Ratio Test, this power series converges absolutely for all x and therefore the convergence

radius R =1.

Problem 3.
P1

n=0(n+ 1)2nxn

Solution. Using geometric series, one has the following expression

1

1� 2x
=

1X
n=0

(2x)n =

1X
n=0

2nxn for j2xj < 1; or jxj < 1

2
:

1



By the Term-by-term Di�erentiation Theorem,

� 1

1� 2x

�0
=

1X
n=0

(2nxn)0

=

1X
n=0

n2nxn�1(1)

=

1X
n=1

(n+ 1)2n+1xn for jxj < 1

2
:

On the other hand,

(2)
� 1

1� 2x

�0
=

2

(1� 2x)2
:

From (1) and (2), one obtains

1

(1� 2x)2
=

1

2

� 1

1� 2x

�0

=
1

2

1X
n=1

(n+ 1)2n+1xn

=
1X
n=1

(n+ 1)2nxn for jxj < 1

2
:

Problem 4.
P1

k=0
(�1)k
(2k+1)!x

4k+2

Solution. Note

sin(y) =
1X
k=0

(�1)k
(2k + 1)!

y2k+1:

Replacing y by 2x, we get

sin(x2) =
1X
k=0

(�1)k
(2k + 1)!

(x2)2k+1

=

1X
k=0

(�1)k
(2k + 1)!

x4k+2:

Problem 5. x+ x2 + 1
3x

3

Solution. Assume that ex =
P1

n=0 anx
n, sinx =

P1
n=0 bnx

n and ex sinx =
P1

n=0 cnx
n.

We have the following Maclaurin series

ex =

1X
n=0

xn

n!
;

sinx =

1X
n=0

(�1)n
(2n+ 1)!

x2n+1:

2



Both of these series are absolutely convergent for all x.

Computing the �rst four terms of the two Maclaurin series explicitly and comparing the coeÆcients

of the like-terms, we see

a0 = 1; a1 = 1; a2 =
1

2
; a3 =

1

6
:

b0 = 0; b1 = 1; b2 = 0; b4 = �1

6
:

By the Series Multiplication Theorem for Power Series (page 670),

c0 = a0b0 = 0;

c1 = a0b1 + a1b0 = 1;

c2 = a0b2 + a1b1 + a2b0 = 1;

c3 = a0b3 + a1b2 + a2b1 + a3b0 =
1

3
:

Hence, the �rst three nonzero terms of the Maclaurin series expansion of ex sinx are

x+ x2 +
1

3
x3:

Problem 6.
P1

n=1
(�1)n+1

n

Solution. a)
P1

n=1(�1)n+1 n3+1
n2+2 diverges because its n-th term does not go to 0.

b)
P1

n=1
1
n
diverges, since it is the harmonic series.

c)
P1

n=1
(�1)n+1

n
converges, since it is an alternating series. But the corresponding series of absolute

values is the harmonic series and so diverges.

d)
P1

n=1
(�1)n+1

n2
converges absolutely by the p-series Test.

e)
P1

n=1
1

n2+n converges absolutely by the Direct Comparison Test and the p-series Test.

Problem 7. 1

Solution. The m-th partial sum is

sm =

1X
n=0

�
e�n � e�(n+1)

�

= (1� e�1) + (e�1 � e�2) + (e�2 � e�3) + � � �+ (e�(m�1) � e�m)

= 1� e�m:

So
P1

n=0

�
e�n � e�(n+1)

�
= limm!1(1� e�m) = 1.

Problem 8. 1) and 2)

Solution. By the p-series Test,
P1

n=1
1
n2

converges and
P1

n=1
1
n
diverges.

Compare the term n2�4n+10
n4+3n2+10 with

1
n2
. By the Limit Comparison Test and the p-series Test,

P1
n=1

n2�4n+10
n4+3n2+10

converges.
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Problem 9. 1
6

Solution. cos(x) has the following absolutely convergent Maclaurin series expansion

cos(x) =

1X
n=0

(�1)n
(2n)!

x2n:

4(cos(x) � 1) + 2x2 = 4(1� x2

2
+

1X
n=2

(�1)n
(2n)!

x2n � 1) + 2x2

= 4(�x2

2
+

1X
n=2

(�1)n
(2n)!

x2n) + 2x2

= �2x2 + 4

1X
n=2

(�1)n
(2n)!

x2n + 2x2

= 4

1X
n=2

(�1)n
(2n)!

x2n:

Hence

lim
x!0

4(cos(x)� 1) + 2x2

x4
= lim

x!0
4

1X
n=2

(�1)n
(2n)!

x2n

x4

= lim
x!0

4
1X
n=2

(�1)n
(2n)!

x2(n�1)

= lim
x!0

�
4
1

4!
+ 4

1X
n=3

(�1)n
(2n)!

x2(n�1)
�

=
4

24

=
1

6
:

Problem 10. 0

Solution. Assume that y(x) =
P1

n=0 cnx
n sloves the initial value problem and that this power series

converges absolutely. By the initial condition, c0 = y(0) = �2.
Plug the series

P1
n=0 cnx

n into the series and use the Term-by-term Di�erentiation Theorem.

� 1X
n=0

cnx
n
�0

=
1X
n=0

cnx
n + x2;

1X
n=0

(cnx
n)0 =

1X
n=0

cnx
n + x2;

1X
n=0

cnnx
n�1 =

1X
n=0

cnx
n + x2;

1X
n=1

cnnx
n�1 =

1X
n=0

cnx
n + x2;

1X
n=0

cn+1(n+ 1)xn =

1X
n=0

cnx
n + x2:
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1X
n=0

cn+1(n+ 1)xn �
1X
n=0

cnx
n � x2 = 0:

But

1X
n=0

cn+1(n+ 1)xn �
1X
n=0

cnx
n � x2

=
1X
n=0

[(n+ 1)cn+1 � cn]x
n � x2

= (c1 � c0) + (2c2 � c1)x+ (3c3 � c2)x
2 +

1X
n=3

[(n+ 1)cn+1 � cn]x
n � x2

= (c1 � c0) + (2c2 � c1)x+ (3c3 � c2 � 1)x2 +

1X
n=3

[(n+ 1)cn+1 � cn]x
n:

Comparing the coeÆcients of the like-terms,

8><
>:

c1 � c0 = 0;

2c2 � c1 = 0;

3c3 � c2 � 1 = 0:

So

c1 = c0 = �2;
c2 =

1

2
c1 = �1;

c3 =
1

3
(c2 + 1) = 0:

The third order term is 0.
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Partial Credit

Problem 11.

Solution. Denote the n-th term by An = (�1)n+1 (x�1)n
n

. Then

lim
n!1

���An+1

An

��� = lim
n!1

n

n+ 1
jx� 1j = jx� 1j:

By the ratio test, the power series converges absolutely for jx � 1j < 1; i.e, 0 < x < 2 and the power

series diverges for jx� 1j > 1; i.e., x < 0 and x > 2.

When x = 0, the series is
P1

n=1(�1)n+1 (�1)n
n

= �P1
n=1

1
n
. It diverges, for

P1
n=1

1
n
is the harmonic

series.

When x = 2, the series is
P1

n=0(�1)n+1 1
n
. It converges, for it is an alternating series but it is not

absolutely convergent.

Hence the convergence interval is 0 < x 6 2.

Problem 12.

Solution. Note ey =
P yn

n! . e
�t2 has the absolutely convergent Maclaurin series expansion

e�t
2

=

1X
n=0

(�t2)n
n!

=

1X
n=0

(�1)n t
2n

n!
:

By the Term-by-term Integration Theorem,

Z x

0

e�t
2

dt =

Z x

0

1X
n=0

(�1)n t
2n

n!
dt

=

1X
n=0

Z x

0

(�1)n t
2n

n!
dt

=
1X
n=0

(�1)n
n!

Z x

0

t2n dt

=

1X
n=0

(�1)n
n!

1

2n+ 1
t2n+1

ix
0

=
1X
n=0

(�1)n
n!

1

2n+ 1
x2n+1:

Problem 13.

Solution. Set f(x) = 1
(arctanx)2(1+x2) for x > 1.

(1) f(n) = 1
(arctann)2(1+n2) .

(2) Since arctanx and 1 + x2 are continuous functions, so is f(x).

(3) Since both arctanx and 1 + x2 are increasing, f(x) is decreasing.
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(4)

lim
x!1

1

(arctanx)2(1 + x2)
= lim

x!1
1

(arctanx)2
lim
x!1

1

1 + x2

=
1�
�
2

�2 � 0
= 0:

Z 1

1

f(x) dx =

Z 1

1

dx

(arctanx)2(1 + x2)

=

Z 1

1

d(arctanx)

(arctanx)2

= � 1

arctanx

i1
1

= � 1
�
2

+
1
�
4

=
2

�
:

By the Integral Test, this series converges.

Problem 14.

Solution. Note

(1) 1
n ln2 n

> 0;

(2) 1
n ln2 n

is decreasing;

(3) limn!1
1

n ln2 n
= 0.P1

n=2
(�1)n
n ln2 n

is an alternating series so it converges.

By the Alternating Series Estimation Theorem (page 657),

���
1X
n=2

(�1)n
n ln2 n

�
10X
n=2

(�1)n
n ln2 n

��� 6
��� (�1)11
11 ln2 11

��� = 1

11 ln2 11
:

The di�erence has the same sign as (�1)11
11 ln2 11

. So the di�erence is negative.

Problem 15.

Solution.
f(x) = cosx; f(�) = �1;

f 0(x) = � sinx; f 0(�) = 0;
f 00(x) = � cosx; f 00(�) = 1;
f 000(x) = sinx; f 000(�) = 0;
f (4)(x) = cosx; f (4)(�) = �1:

The order 4 Taylor polynomial is

f(�) + f 0(�)(x � �) +
f 00(�)

2!
(x � �)2 +

f 000(�)

3!
(x� �)3 +

f (4)(�)

4!
(x� �)4

= �1 + 1

2
(x� �)2 � 1

24
(x� �)4:
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