Math 126, Test III

April 20, 1999

Multiple Choice
Problem 1. 1) conditionally converges, 2) diverges

Solution. 1) 307, % is an alternating series, so it converges by the Leibniz’s Theorem.

The corresponding series of absolute values is equal to Y

1 % It diverges because it is the harmonic

series.

Hence )7, 1" conditionally converges.
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By the n-th Term Test, 3.°° . ¥2’=L djverges.
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Solution. Let A, = &

; i.e, A,, denotes the n-th term of the power series.
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for all z. By the Ratio Test, this power series converges absolutely for all  and therefore the convergence

radius R = oo.
Problem 3. > 7 (n+ 1)2"z"

Solution. Using geometric series, one has the following expression
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By the Term-by-term Differentiation Theorem,
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On the other hand,
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From (1) and (2), one obtains
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Problem 4. Y7, (;;_i)lk)!x%m

Solution. Note -
sm(y) — Z (_l)k y2k+1
CYRIERY] .
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Replacing y by 2z, we get
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Problem 5. z + 22 + %xB

Solution. Assume that e* =37 ja,z", sine =)~ b,z™ and e sinz = > 7 ca™.

We have the following Maclaurin series
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Both of these series are absolutely convergent for all x.

Computing the first four terms of the two Maclaurin series explicitly and comparing the coefficients

of the like-terms, we see
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By the Series Multiplication Theorem for Power Series (page 670),

Co = aob[) = 0,
Cc1 = a0b1 + a1b0 = ].,
Cy = Clobg + a1b1 + a2b0 = ].,

1
C3 = a0b3 + a1b2 + a2b1 + Clgb[) = g

Hence, the first three nonzero terms of the Maclaurin series expansion of e” sinx are
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Problem 6. )~ (="
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Solution. a) > 7 (—1)"*! Zzi% diverges because its n-th term does not go to 0.

b) Y02, L diverges, since it is the harmonic series.

— n+1 . . . . . . .
c) S (=1) converges, since it is an alternating series. But the corresponding series of absolute

n=1 n

values is the harmonic series and so diverges.
+1

d)y >0, (_ln): converges absolutely by the p-series Test.

e) S°° . 1 converges absolutely by the Direct Comparison Test and the p-series Test.
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Problem 7. 1

Solution. The m-th partial sum is
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So Y2, (e — e—(n+1)) = limym_yeo(l — e~™) = 1.

Problem 8. 1) and 2)

Solution. By the p-series Test, Y.~ | -5 converges and Y~ L diverges.
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Problem 9. %

Solution. cos(z) has the following absolutely convergent Maclaurin series expansion
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Problem 10. 0

Solution. Assume that y(z) = Y. cya” sloves the initial value problem and that this power series
converges absolutely. By the initial condition, ¢y = y(0) = —2.

Plug the series Y >° | ¢,2" into the series and use the Term-by-term Differentiation Theorem.
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ch+1n+1 chw —z2=0.

But
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Comparing the coefficients of the like-terms,
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So
C1 = Cy = —2,
Cy = —C1 = —].,
1
c3 = 5(62 +].) =0.

The third order term is 0.



Partial Credit
Problem 11.

Solution. Denote the n-th term by A,, = (—1)”“%. Then
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|z — 1| = |z —1].
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By the ratio test, the power series converges absolutely for |z — 1| < 1; i.e, 0 < < 2 and the power
series diverges for |z — 1| > 1;i.e.,, z < 0 and = > 2.

When z = 0, the series is Y00, (—1)"H E0% = 5% LTt diverges, for Y02, L is the harmonic
series.

When z = 2, the series is E;ozo(—l)"“%. It converges, for it is an alternating series but it is not
absolutely convergent.

Hence the convergence interval is 0 < z < 2.
Problem 12.

Solution. Note e¥ = %n, e~t" has the absolutely convergent Maclaurin series expansion
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Problem 13.
Solution. Set f(.’L') = Ww for x > 1.
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(1) f(n) = Graammrary-
(2) Since arctanz and 1 + 2 are continuous functions, so is f(z).

(3) Since both arctanz and 1 + z? are increasing, f(z) is decreasing.
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By the Integral Test, this series converges.

Problem 14.
Solution. Note

(1) 2 > 0;

nln®n
1 -
(2) iz is decreasing;

(3) limp_oe = 0.
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By the Alternating Series Estimation Theorem (page 657),
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The difference has the same sign as % So the difference is negative.

Problem 15.

Solution.

() = cos e, flm)=-1,;
x) = —sinz, f'(m)
x) =—cosz, f'(r)=1,
"(x) =sine, f(m) = 0;
f®(x) =cosz, fH(x)=-1.

f(
n
r
The order 4 Taylor polynomial is
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