Math 126: Calculus II

Exam II November 9, 2000

Name: \qquad
Instructor: \qquad

There are 7 problems on 7 pages worth a total of 84 points. You start with 16 points. Each part of a problem is worth the same number of points.

You may use a calculator if you wish.
To receive partial credit on a problem, you must show your work and all important steps. No credit will be given for an answer if no work is shown.

1. (12 pts) Evaluate the integrals.
a) $\int x e^{2 x} d x$
b) $\int \frac{\sqrt{x^{2}+1}}{x^{4}} d x$

Name: \qquad
2. $(6 \mathrm{pts})$ Find the partial fraction decomposition of $\frac{x+2}{x^{2}\left(x^{2}+1\right)}$.
3. $(6 \mathrm{pts})$ Compute the value of the series $\sum_{n=1}^{\infty} \frac{3^{n}+2(-1)^{n+1}}{4^{n}}$.

Name:
4. (12 pts) Find the limit of each sequence, or show it does not exist.
a) $a_{n}=\frac{(-1)^{n} n}{n+1}$
b) $a_{n}=n \sin (1 / n)$

Name:
5. (12 pts) Consider the series $s=\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$.
a) Compute the $4^{\text {th }}$ partial sum, s_{4}, exactly.
b) Find the value of s or show the series diverges.

Name:
6. (24 pts) Determine whether the following series converge.
a) $\sum_{n=2}^{\infty}\left(1-\frac{1}{n}\right)^{n}$
b) $\sum_{n=2}^{\infty} \frac{\sqrt{n}}{n^{2}-1}$

Name:
c) $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{3}}$
d) $\sum_{n=1}^{\infty} \frac{5^{n}}{n^{3}}$

Name: \qquad
7. (12 pts)
a) Show that the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n!}{(2 n-1)!}$ converges.
b) Find an approximate value of the sum of the series with an error which is less than 10^{-2}. Be sure to explain why the error is less than 10^{-2}.

