
Math 126: Calculus II, Exam II Solutions

1 a) Using integration by parts with u = x, dv = e2xdx, du = dx, v = (1/2)e2x, gives∫
xe2x dx =

x

2
e2x − 1

2

∫
e2x dx =

x

2
e2x − 1

4
e2x + C

b) Using the trig substitution x = tan(θ), dx = sec2(θ)dθ,
√

x2 + 1 = sec(θ), gives∫ √
x2 + 1

x4
dx =

∫ sec3(θ)

tan4(θ)
dθ =

∫ cos(θ)

sin4(θ)
dθ. Substituting u = sin(θ), du = cos(θ)dθ gives∫

u−4du = − 1

3 sin3(θ)
+ C = −(x2 + 1)3/2

3x3
+ C.

2. The partial fraction decomposition of
x + 2

x2(x2 + 1)
looks like

x + 2

x2(x2 + 1)
=

A

x
+

B

x2
+

Cx + D

x2 + 1
. Multiplying by x2(x2 + 1) gives x + 2 = Ax(x2 + 1) + B(x2 + 1) + (Cx + D)x2 =

(A + C)x3 + (B + D)x2 + Ax + B. Therefore, A = 1, B = 2, A + C = 0, and B + D = 0, so
C = −1, D = −2.

3.
∞∑

n=1

3n + 2(−1)n+1

4n
=

∞∑
n=1

(3

4

)n
− 2

∞∑
n=1

(−1

4

)n
=

3/4

1− 3/4
− 2

−1/4

1− (−1/4)
= 3 + 2

1

5
=

17

5

4. a) an =
(−1)nn

n + 1
diverges because one subsequence converges to 1, a2k =

2k

2k + 1
→ 1, and

another subsequence converges to −1, a2k+1 =
−(2k + 1)

2k + 2
→ −1.

b) an = n sin(1/n) =
sin(1/n)

1/n
, so applying L’Hopital’s Rule gives

lim
n→∞

sin(1/n)

1/n
= lim

n→∞

cos(1/n)(−1/n2)

−1/n2
= cos(0) = 1.

5. Consider
∞∑

n=1

ln
( n

n + 1

)
.

a) The 4th partial sum is s4 = ln
(1

2

)
+ ln

(2

3

)
+ ln

(3

4

)
+ ln

(4

5

)
= ln(1) − ln(2) + ln(2) −

ln(3) + ln(3)− ln(4) + ln(4)− ln(5) = − ln(5)

b) The series is telescoping, since ln
( n

n + 1

)
= ln(n) − ln(n + 1), so the nth partial sum is

sn = ln(1)−ln(n+1) (as in part a). Therefore, the limit of sn is lim
n→∞

sn = lim
n→∞

− ln(n) = −∞
and the series diverges.
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6. a)
∞∑

n=2

(
1− 1

n

)n
diverges because the nth term does not approach 0:

lim
n→∞

(
1− 1

n

)n
= e−1 6= 0.

b)
∞∑

n=2

√
n

n2 − 1
converges by the Limit Comparison Test: We compare the series to

∞∑
n=2

1

n3/2

which converges because it is a p-series with p = 3/2 > 1. Taking the limit of the quotient

of the terms of these series gives lim
n→∞

√
n/(n2 − 1)

1/n3/2
= lim

n→∞

n2

n2 − 1
= lim

n→∞

1

1− 1/n2
= 1.

c)
∞∑

n=2

1

n(ln(n))3
converges by the Integral Test: Using the substitution u = ln(u), du =

1

u
du,

gives
∫ ∞
2

1

x(ln(x))3
dx =

∫ ∞
ln(2)

1

u3
du = lim

b→∞
− 1

2u2

∣∣∣b
ln(2)

= lim
b→∞

− 1

2b2
+

1

2(ln(2))2

=
1

2(ln(2))2
<∞.

d)
∞∑

n=1

5n

n3
diverges by the Ratio Test:

lim
n→∞

an+1

an

= lim
n→∞

5n+1

(n + 1)3

n3

5n
= lim

n→∞
5
( n

n + 1

)3
= 5 > 1.

7. a) The series
∞∑

n=1

(−1)n+1 n!

(2n− 1)!
converges because it is alternating,

∞∑
n=1

(−1)n+1un, with

un positive and decreasing to 0:
un+1

un

=
(n + 1)!

(2(n + 1)− 1)!

(2n− 1)!

n!
=

n + 1

(2n + 1)(2n)
< 1 and

lim
n→∞

un = lim
n→∞

n!

(2n− 1)!
= lim

n→∞

1

(2n− 1)(2n− 2) · · · (n + 1)
= 0.

b) Since the error of approximating an alternating series by the nth partial sum sn is less
than un+1, we can guarantee an error less than 10−2 by choosing n such that un+1 < 10−2.

Note that n = 2 is not good enough: u3 =
3!

5!
=

1

20
= .05 > 10−2; but n = 3 works: u4 =

4!

7!
=

1

7 · 6 · 5
=

1

210
= .00476 < 10−2. Therefore, s3 = 1− 2!

3!
+

3!

5!
= 1− 1

3
+

1

20
=

43

60
= .716

approximates the series with an error less than 10−2.
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