Math 126: Calculus II, Exam II Solutions

1 a) Using integration by parts with $u=x, d v=e^{2 x} d x, d u=d x, v=(1 / 2) e^{2 x}$, gives $\int x e^{2 x} d x=\frac{x}{2} e^{2 x}-\frac{1}{2} \int e^{2 x} d x=\frac{x}{2} e^{2 x}-\frac{1}{4} e^{2 x}+C$
b) Using the trig substitution $x=\tan (\theta), d x=\sec ^{2}(\theta) d \theta, \sqrt{x^{2}+1}=\sec (\theta)$, gives
$\int \frac{\sqrt{x^{2}+1}}{x^{4}} d x=\int \frac{\sec ^{3}(\theta)}{\tan ^{4}(\theta)} d \theta=\int \frac{\cos (\theta)}{\sin ^{4}(\theta)} d \theta$. Substituting $u=\sin (\theta), d u=\cos (\theta) d \theta$ gives $\int u^{-4} d u=-\frac{1}{3 \sin ^{3}(\theta)}+C=-\frac{\left(x^{2}+1\right)^{3 / 2}}{3 x^{3}}+C$.
2. The partial fraction decomposition of $\frac{x+2}{x^{2}\left(x^{2}+1\right)}$ looks like $\frac{x+2}{x^{2}\left(x^{2}+1\right)}=\frac{A}{x}+\frac{B}{x^{2}}+$ $\frac{C x+D}{x^{2}+1}$. Multiplying by $x^{2}\left(x^{2}+1\right)$ gives $x+2=A x\left(x^{2}+1\right)+B\left(x^{2}+1\right)+(C x+D) x^{2}=$ $(A+C) x^{3}+(B+D) x^{2}+A x+B$. Therefore, $A=1, B=2, A+C=0$, and $B+D=0$, so $C=-1, D=-2$.
3. $\sum_{n=1}^{\infty} \frac{3^{n}+2(-1)^{n+1}}{4^{n}}=\sum_{n=1}^{\infty}\left(\frac{3}{4}\right)^{n}-2 \sum_{n=1}^{\infty}\left(\frac{-1}{4}\right)^{n}=\frac{3 / 4}{1-3 / 4}-2 \frac{-1 / 4}{1-(-1 / 4)}=3+2 \frac{1}{5}=\frac{17}{5}$
4. a) $a_{n}=\frac{(-1)^{n} n}{n+1}$ diverges because one subsequence converges to $1, a_{2 k}=\frac{2 k}{2 k+1} \rightarrow 1$, and another subsequence converges to $-1, a_{2 k+1}=\frac{-(2 k+1)}{2 k+2} \rightarrow-1$.
b) $a_{n}=n \sin (1 / n)=\frac{\sin (1 / n)}{1 / n}$, so applying L'Hopital's Rule gives
$\lim _{n \rightarrow \infty} \frac{\sin (1 / n)}{1 / n}=\lim _{n \rightarrow \infty} \frac{\cos (1 / n)\left(-1 / n^{2}\right)}{-1 / n^{2}}=\cos (0)=1$.
5. Consider $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$.
a) The $4^{\text {th }}$ partial sum is $s_{4}=\ln \left(\frac{1}{2}\right)+\ln \left(\frac{2}{3}\right)+\ln \left(\frac{3}{4}\right)+\ln \left(\frac{4}{5}\right)=\ln (1)-\ln (2)+\ln (2)-$ $\ln (3)+\ln (3)-\ln (4)+\ln (4)-\ln (5)=-\ln (5)$
b) The series is telescoping, since $\ln \left(\frac{n}{n+1}\right)=\ln (n)-\ln (n+1)$, so the $n^{\text {th }}$ partial sum is $s_{n}=\ln (1)-\ln (n+1)$ (as in part a). Therefore, the limit of s_{n} is $\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}-\ln (n)=-\infty$ and the series diverges.
6. a) $\sum_{n=2}^{\infty}\left(1-\frac{1}{n}\right)^{n}$ diverges because the $n^{\text {th }}$ term does not approach 0 :
$\lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)^{n}=e^{-1} \neq 0$.
b) $\sum_{n=2}^{\infty} \frac{\sqrt{n}}{n^{2}-1}$ converges by the Limit Comparison Test: We compare the series to $\sum_{n=2}^{\infty} \frac{1}{n^{3 / 2}}$ which converges because it is a p-series with $p=3 / 2>1$. Taking the limit of the quotient of the terms of these series gives $\lim _{n \rightarrow \infty} \frac{\sqrt{n} /\left(n^{2}-1\right)}{1 / n^{3 / 2}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}-1}=\lim _{n \rightarrow \infty} \frac{1}{1-1 / n^{2}}=1$.
c) $\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{3}}$ converges by the Integral Test: Using the substitution $u=\ln (u), d u=\frac{1}{u} d u$, gives $\int_{2}^{\infty} \frac{1}{x(\ln (x))^{3}} d x=\int_{\ln (2)}^{\infty} \frac{1}{u^{3}} d u=\lim _{b \rightarrow \infty}-\left.\frac{1}{2 u^{2}}\right|_{\ln (2)} ^{b}=\lim _{b \rightarrow \infty}-\frac{1}{2 b^{2}}+\frac{1}{2(\ln (2))^{2}}$ $=\frac{1}{2(\ln (2))^{2}}<\infty$.
d) $\sum_{n=1}^{\infty} \frac{5^{n}}{n^{3}}$ diverges by the Ratio Test:
$\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{5^{n+1}}{(n+1)^{3}} \frac{n^{3}}{5^{n}}=\lim _{n \rightarrow \infty} 5\left(\frac{n}{n+1}\right)^{3}=5>1$.
7. a) The series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{n!}{(2 n-1)!}$ converges because it is alternating, $\sum_{n=1}^{\infty}(-1)^{n+1} u_{n}$, with u_{n} positive and decreasing to 0 : $\frac{u_{n+1}}{u_{n}}=\frac{(n+1)!}{(2(n+1)-1)!} \frac{(2 n-1)!}{n!}=\frac{n+1}{(2 n+1)(2 n)}<1$ and $\lim _{n \rightarrow \infty} u_{n}=\lim _{n \rightarrow \infty} \frac{n!}{(2 n-1)!}=\lim _{n \rightarrow \infty} \frac{1}{(2 n-1)(2 n-2) \cdots(n+1)}=0$.
b) Since the error of approximating an alternating series by the $n^{\text {th }}$ partial sum s_{n} is less than u_{n+1}, we can guarantee an error less than 10^{-2} by choosing n such that $u_{n+1}<10^{-2}$. Note that $n=2$ is not good enough: $u_{3}=\frac{3!}{5!}=\frac{1}{20}=.05>10^{-2}$; but $n=3$ works: $u_{4}=$ $\frac{4!}{7!}=\frac{1}{7 \cdot 6 \cdot 5}=\frac{1}{210}=.00476<10^{-2}$. Therefore, $s_{3}=1-\frac{2!}{3!}+\frac{3!}{5!}=1-\frac{1}{3}+\frac{1}{20}=\frac{43}{60}=.716$ approximates the series with an error less than 10^{-2}.

