Math 126: Calculus II, Exam I Solutions

1. a) Let $f(x)=x \ln x$. Find the value of $\left(f^{-1}\right)^{\prime}\left(2 e^{2}\right)$.
$f^{\prime}(x)=\ln (x)+x \cdot \frac{1}{x}=\ln (x)+1$.
Since $f\left(e^{2}\right)=2 e^{2},\left(f^{-1}\right)^{\prime}\left(2 e^{2}\right)=\frac{1}{f^{\prime}\left(e^{2}\right)}=\frac{1}{\ln \left(e^{2}\right)+1}=\frac{1}{2+1}=\frac{1}{3}$.
b) $\frac{d}{d x} \cos ^{-1}\left(x^{-1}\right)=-\frac{1}{\sqrt{1-\left(x^{-1}\right)^{2}}}\left(-x^{-2}\right)=\frac{1}{x^{2} \sqrt{1-\left(1 / x^{2}\right)}}=\frac{1}{|x| \sqrt{x^{2}-1}}$.
c) $\frac{d}{d x} x^{\cosh (x)}=\frac{d}{d x} e^{\cosh (x) \ln (x)}=e^{\cosh (x) \ln (x)}(\sinh (x) \ln (x)+\cosh (x)(1 / x))$ $=x^{\cosh (x)}(\sinh (x) \ln (x)+\cosh (x) / x)$.
2. a) $\int e^{x} \sin \left(1+e^{x}\right) d x$. Let $u=1+e^{x}, d u=e^{x} d x$. Then $\int e^{x} \sin \left(1+e^{x}\right) d x=$ $\int \sin (u) d u=-\cos (u)+C=-\cos \left(1+e^{x}\right)+C$.
b) $\int_{0}^{1} \frac{x}{1+x^{4}} d x$. Let $u=x^{2}, d u=2 x d x$, or $x d x=(1 / 2) d u$, and the new limits are from $u=0^{2}$ to $u=1^{2}$. Thus $\int_{0}^{1} \frac{x}{1+x^{4}} d x=\frac{1}{2} \int_{0}^{1} \frac{1}{1+u^{2}} d u=$ $\left.\frac{1}{2} \tan ^{-1}(u)\right|_{0} ^{1}=\frac{1}{2}\left[\tan ^{-1}(1)-\tan ^{-1}(0)\right]=(1 / 2)[\pi / 4-0]=\pi / 8$.
c) $\int \frac{x}{x+1} d x$. First divide: $\frac{x}{x+1}=1-\frac{1}{x+1}$. Then $\int \frac{x}{x+1} d x=$ $\int 1-\frac{1}{x+1} d x=x-\ln |x+1|+C$.
3. a) $\lim _{x \rightarrow 0} \frac{\sin ^{-1}(x)}{x}$. The numerator and denominator both approach 0 , so by

L'Hôpital's Rule the limit equals $\lim _{\substack{x \rightarrow 0 \\-1 / x}} \frac{1 / \sqrt{1-x^{2}}}{1}=1$.
b) $\lim _{x \rightarrow 0^{+}} e^{-1 / x} \ln (x)$. Note that $e^{-1 / x} \rightarrow 0$ and $\ln (x) \rightarrow \infty$. Rewrite the limit as $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{e^{1 / x}}$ so both the numerator and denominator approach infinity, and then apply L'Hôpital's Rule: $\lim _{x \rightarrow 0^{+}} \frac{\ln (x)}{e^{1 / x}}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{e^{1 / x}\left(-1 / x^{2}\right)}=\lim _{x \rightarrow 0^{+}}-\frac{x}{e^{1 / x}}$. The numerator approaches 0 and the denominator approaches infinity, so the limit is 0 .
4. Decide whether $g(x)$ grows faster than, slower than, or at the same rate as $f(x)$.
a) $f(x)=\frac{1}{x}$ and $g(x)=\sin \left(\tan ^{-1}(x)\right)$. Since $\tan ^{-1}(x) \rightarrow \pi / 2$ and $1 / x \rightarrow 0$ as $x \rightarrow \infty, \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{1 / x}{\sin \left(\tan ^{-1}(x)\right)}=\frac{1}{\sin (\pi / 2)}=\frac{0}{1}=0$. (Note that L'Hôpital's Rule does not apply.) Therefore, $g(x)$ grows faster than $f(x)$.
b) $f(x)=\sinh (\ln (x))$ and $g(x)=x$. Since $\sinh (\ln (x))=\left(e^{\ln (x)}-e^{-\ln (x)}\right) / 2=$ $(x-1 / x) / 2, \lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\lim _{x \rightarrow \infty} \frac{(x-1 / x) / 2}{x}=\lim _{x \rightarrow \infty}\left(1-1 / x^{2}\right) / 2=1 / 2$. (note that repeatedly applying L'Hôpital's Rule to $\sinh (\ln (x)) / x$ brings you back to the beginning.) Therefore, $g(x)$ grows at the same rate as $f(x)$.
5. Warfarin is a drug used as an anticoagulant. After administration of the drug ends, the quantity remaining in a patient's body decreases at a rate proportional to the quantity remaining. The half-life of Warfarin in the body is 37 hours. How many days does it take for the drug level in the body to be reduced to 10% of the original level.

Solution. Let $y(t)$ be the quantity remaining after t hours and let $y_{0}=y(0)$ be the (unknown) initial amount. We must solve for the time t_{1} such that $y\left(t_{1}\right)=0.1 y_{0}$. Since $y(t)$ decays exponentially, $y(t)=y_{0} e^{k t}$. The half life is 37 hours which means that $(1 / 2) y_{0}=y(37)=y_{0} e^{37 k}$. Solving for k gives $k=\ln (1 / 2) / 37$. Therefore, $y(t)=y_{0} e^{\ln (1 / 2) t / 37}=y_{0}\left(\frac{1}{2}\right)^{t / 37}$. We now solve for $t_{1}: 0.1 y_{0}=y\left(t_{1}\right)=y_{0}\left(\frac{1}{2}\right)^{t_{1} / 37}$. Taking logarithms gives $\ln (0.1)=\left(t_{1} / 37\right) \ln (0.5)$ so $\left.t_{1}=37 \ln (0.1)\right) / \ln (0.5)=122.9$ hours. The number of days is $t_{1} / 24=$ $122.9 / 24=5.1$.
6. a) Solve the differential equation $x y^{\prime}+2 y=x$.

The standard form is $y^{\prime}+\frac{2}{x} y=1$, so $p(x)=\frac{2}{x}$ and $q(x)=1$. Multiplying the equation by $v(x)=e^{\int 2 / x d x}=e^{2 \ln (x)}=x^{2}$ gives $x^{2} y^{\prime}+2 x y=x^{2}$. The left-hand side is the derivative of $x^{2} y^{\prime}$ so $\frac{d}{d x}\left(x^{2} y\right)=x^{2}$. Integrating gives, $x^{2} y=\frac{1}{3} x^{3}+C$, or $y=\frac{x}{3}+\frac{C}{x^{2}}$.
b) Solve the initial value problem $x^{2} y^{\prime}=y, \quad y(1)=1$.

Separate the variables, $\frac{d y}{y}=\frac{d x}{x^{2}}$, and integrate, $\int \frac{d y}{y}=\int \frac{d x}{x^{2}}$. This gives $\ln (y)=-\frac{1}{x}+C$. Plug in the initial condition $y=1$ when $x=1: \ln (1)=-1+C$, so $C=1$. Exponentiating gives $y=e^{1-1 / x}$.

