Multiple Choice

1.(5pts) Determine whether the following series converge or diverge.

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
, 2) $\sum_{n=1}^{\infty} \frac{1}{(\ln n)^n}$, 3) $\sum_{n=2}^{\infty} \frac{\sqrt{n^3 - 1}}{3n - 1}$.

- (a) 1) 2) and 3) converge
- (b) 1) absolutely converges, 2) and 3) diverge
- (c) 1) conditionally converges, 2) and 3) diverge
- (d) 1) conditionally converges, 2) absolutely converges and 3) diverge
- (e) 1) 2) and 3) diverge

2.(5pts) Find the radius R of convergence of the following power series

$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{n^n}.$$

(a)
$$R = 0$$

(b)
$$R = \infty$$

(c)
$$R = 1$$

(d)
$$R = 5$$

(e)
$$R = \sqrt{5}$$

3.(5pts) Use the definition to find the Maclaurin series for the function

$$\frac{1}{(1-2x)^2}$$

(a)
$$\sum_{n=1}^{\infty} (-1)^n n 2^n x^{n-1}$$

(b)
$$\sum_{n=1}^{\infty} (-1)^n n 2^{(n+1)} x^n$$

(a)
$$\sum_{n=1}^{\infty} (-1)^n n 2^n x^{n-1}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n n 2^{(n+1)} x^n$ (c) $\sum_{n=1}^{\infty} (-1)^n n 2^{(n-1)} x^{n-1}$

(d)
$$\sum_{n=1}^{\infty} (-1)^n 2^n x^n$$

(d)
$$\sum_{n=1}^{n=1} (-1)^n 2^n x^n$$
 (e) $\sum_{n=1}^{n=1} (-1)^n (n+1) 2^{(n-1)} x^{n-1}$

4.(5pts) Give the Maclaurin series of the function $f(x) = \sin(x^2)$.

(a)
$$\sum_{k=0}^{\infty} \frac{(-1)^{(2k+1)}}{(2k+1)!} x^{4k+2}$$
 (b)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{4k}$$
 (c)
$$\sum_{k=0}^{\infty} \frac{(-1)^{(k+1)}}{(2k+1)!} x^{2k+2}$$
 (d)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$
 (e)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{4k+2}$$

(b)
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{4k}$$

(c)
$$\sum_{k=0}^{\infty} \frac{(-1)^{(k+1)}}{(2k+1)!} x^{2k+2}$$

(d)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

(e)
$$\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{4k+2}$$

5.(5pts) Give the first three nonzero terms of the Maclaurin series expansion of $e^x \sin x$.

2

(a)
$$x + x^2 + \frac{2}{3}x^3$$

(b)
$$x - x^2 - \frac{1}{2}x^3$$

(b)
$$x - x^2 - \frac{1}{2}x^3$$
 (c) $x + 3x^2 + \frac{1}{6}x^3$

(d)
$$x + x^2 + \frac{1}{3}x^3$$

(e)
$$x + x^2 - x^3$$

6.(5pts) Which series conditionally converges?

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n}$$

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{n}$ (c) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ (d) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$ (e) $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$

(d)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$$

$$\text{(e) } \sum_{n=1}^{\infty} \frac{1}{n^2 + n}$$

7.(5pts) Find the sum of the following series

$$\sum_{n=0}^{\infty} e^{-n} - e^{-(n+1)}.$$

- (a) diverges
- (b) e
- (c) e^{-1}
- (d) 1

(e) 2

8.(5pts) Determine the set of all values x such that the series

$$\sum_{n=0}^{\infty} (\ln x)^n$$

converges.

(a) $e^{-1} < x < e$ (b) diverges for all x (c) 1 < x < e (d) $e^{-1} \le x < 0$ (e) converges for all x

9.(5pts) Compute

$$\lim_{x \to \infty} \frac{2(\cos(x) - 1) + 2x^2}{x^4}$$

(a)
$$+\infty$$

(c)
$$\frac{1}{24}$$

(e) $\frac{1}{12}$

10.(5pts) Find the third order term of the Maclaurin expansion of the solution y(x) of the following initial value problem:

$$y' = y + x^2, \quad y(0) = -2$$

(a)
$$x^{3}$$

(b) 0

(c)
$$\frac{x^3}{3}$$

Partial Credit

(d) $3x^3$

(e) $\frac{x^3}{3!}$

11.(10pts) Find interval of convergence of the following series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{(1-x)^n}{n}.$$

12.(10pts) Find Maclaurin series representation for the function

$$\int_0^x e^{-t^2} dt.$$

13.(10pts) Find interval of convergence of the following power series:

$$\sum_{n=1}^{\infty} \frac{(2n)^2}{3} (x-2)^n.$$

Be sure to investigate the endpoints of the interval.

14.(10pts) If 0 < x < 0.5, use Alternating Series Theorem and the Binomial Theorem to show that $\sqrt{1+x} \approx 1+0.5x$ with an error less than 0.032. Notice that the series is alternating after the first term.

15.(10pts) Find 4 first terms of the Taylor series for $f(x) = \cos x$ about $a = \pi$.

name:			
Instruc	tor-section:		

Math126, Test III

April 20, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for two hours.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 13 pages of the test.

Good Luck!

Please mark your answers with an X.

		•			
1.	(a)	(b)	(c)	(ullet)	(e)
2.	(a)	(ullet)	(c)	(d)	(e)
3.	(ullet)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(●)
5.	(a)	(b)	(c)	(d)	(●)
6.	(a)	(b)	(ullet)	(d)	(e)
7.	(a)	(b)	(c)	(ullet)	(e)
8.	(ullet)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(●)
10.	(a)	(ullet)	(c)	(d)	(e)