1.(6pts) Which equation below is the equation of an ellipse with its major axis the x-axis?

(a)
$$\frac{x^2}{25} + \frac{y^2}{36} = 1$$
 (b) $\frac{x^2}{36} + \frac{y^2}{25} = 1$ (c) $\frac{x^2}{25} - \frac{y^2}{36} = 1$ (d) $\frac{x^2}{36} - \frac{y^2}{25} = 1$ (e) $\frac{x^2}{36} + \frac{y^2}{25} = 0$

2.(6pts) Which equation below is that of a hyperbola with foci
$$(\pm 4, 0)$$
?

(a) $\frac{x^2}{5} - \frac{y^2}{3} = 1$ (b) $-\frac{x^2}{5} + \frac{y^2}{3} = 1$ (c) $\frac{x^2}{14} - \frac{y^2}{2} = 1$ (d) $\frac{x^2}{9} - \frac{y^2}{7} = 0$ (e) $-\frac{x^2}{14} + \frac{y^2}{2} = 1$

- 3.(6pts) The graph of $x=\frac{y^2}{20}$ is a parabola with directrix the line (a) x=5 (b) y=5 (c) x=0 (d) x=-5 (e) y=-5

- 4.(6pts) Find the slope of the tangent line to the parameterized curve $x = t^2 + 3t + 1$, $y = t^3 - 2t$ when t = 2.
- (a) $\frac{10}{7}$
- (b) $\frac{7}{10}$
- (c) 1
- (d) $\frac{-2}{7}$ (e) $\frac{-7}{2}$

5.(6pts) Which integral below represents the arclength of the cycloid $x = a(t - \sin t)$, $y = a(1 - \cos t)$; $0 \le t \le 2\pi$?

- (a) $\sqrt{2a^2} \int_0^{2\pi} \sqrt{1 \cos t + \sin t} \, dt$
- (b) $\sqrt{2a^2} \int_0^{2\pi} \sqrt{t \sin t + 1 \cos t} dt$

(c) $\sqrt{2a^2} \int_0^{2\pi} \sqrt{1-\cos t} \, dt$

(d) $\sqrt{2a^2} \int_0^{2\pi} \sqrt{1 + \cos t} \, dt$

(e) $\sqrt{2a^2} \int_0^{2\pi} \sqrt{1 - \sin t} \, dt$

6.(6pts) The parameterized curve $x = t^3 + 2t$, $y = \cos t$; $-\infty < t < \infty$ is also the graph of a function y = f(x). What is the coefficient of x^2 in the Mclaurin series expansion for f(x)?

- (a) $\frac{-1}{2}$
- (b) $\frac{-1}{8}$
- (c) 0
- (d) $\frac{1}{8}$
- (e) $\frac{1}{2}$

7.(6pts) The function $f(x) = x \sin x$ has one critical point for $-\frac{\pi}{2} < x < \frac{\pi}{2}$. Where is it and determine whether it is a local minima, maxima or neither.

- (c) x = 0 neither
- (a) x = 0, local max (b) x = 0, local min (d) $x = \frac{\pi}{4}$, local max (e) $x = \frac{\pi}{4}$, local min

8.(6pts) Which number below is equal to $\log_3(81)$?

- (a) -4
- (b) -2
- (c) 0
- (d) 2
- (e) 4

- 9.(6pts) Let $f(x) = x + \ln x$ for x > 0. Find $\frac{df^{-1}}{dx}(e+1)$.
- (a) f is not one to one (b) e (c) $\frac{1}{e+1}$ (d) $\frac{e}{e+1}$ (e) $1 + \frac{1}{e}$

- 10.(6pts) A certain bacteria culture, undergoing natural growth, doubles in size after 4 minutes. If there were 100 specimens at time t = 0, when will the number have increased to 1600 specimens?
- (a) 2 weeks
- (b) 1 day
- (c) 3 hours, 20 minutes
- (d) 2 hours
- (e) 16 minutes

- 11.(6pts) Let $f(x) = \int_0^x e^{-t^2} dt$. Find the Mclaurin series for f(x).

 (a) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{(n+1)!}$ (b) $\sum_{n=0}^{\infty} \frac{x^{2n+1}}{n!}$ (c) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)n!}$ (d) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{3n}}{(3n)n!}$ (e) $\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n)!}$

- 12.(6pts) Calculate $\lim_{u \to \infty} \frac{u^3 + 5u^2 2u + 10}{3u^2 + 7u 8}$. (a) ∞ (b) $\frac{5}{3}$ (c) $\frac{-2}{7}$

- (d) $\frac{-5}{4}$
- (e) $\frac{1}{3}$

- 13.(6pts) The solution to the initial value problem $xy' = y + x^3$, y(1) = 1 is
 (a) $y = x^3$ (b) $y = e^{x-1} + 1$ (c) $y^2 + y = x^2 + x$ (d) $y = \frac{x^2 + 2}{3}$ (e) $y = \frac{x^3}{4} + \frac{3}{4x}$

- 14.(6pts) The improper integral $\int_{1}^{\infty} \frac{1}{x^{1.01}} dx$
- (a) converges to $\frac{1}{1.01}$
- (b) converges to 1.01
- (c) converges to .01

- (d) converges to 100
- (e) diverges

15.(6pts) The partial fraction expansion of $\frac{x+7}{x^2+4x+3}$ is

(a) $\frac{2}{x-1} + \frac{3}{x-3}$ (b) $\frac{3}{x+1} - \frac{2}{x+3}$ (c) $\frac{5}{x+1} + \frac{4}{x+3}$ (d) $\frac{4}{x+1} - \frac{3}{x+3}$ (e) $\frac{x+7}{x^2+4x+3}$

(a)
$$\frac{2}{x-1} + \frac{3}{x-3}$$

(b)
$$\frac{3}{x+1} - \frac{2}{x+3}$$

(c)
$$\frac{5}{x+1} + \frac{4}{x+3}$$

(d)
$$\frac{4}{x+1} - \frac{3}{x+3}$$

(e)
$$\frac{x+7}{x^2+4x+3}$$

16.(6pts)
$$\int_0^3 xe^x dx$$

(a) $3e^3$ (b) $3e^3 - 3$ (c) $2e^3 + 1$ (d) $2e^3$ (e) $3e^2$

- 17.(6pts) Which expression below is equal to $\int_0^{\frac{1}{2}} \sqrt{1-x^2} dx$?
- (a) $\int_0^{\frac{\pi}{6}} \cos\theta \, d\theta$ (b) $\int_0^{\frac{\pi}{6}} \cos^3\theta \, d\theta$ (c) $\int_0^{\frac{\pi}{6}} \cos^2\theta \, d\theta$ (d) $\int_0^{\frac{\pi}{6}} \sin^2\theta \, d\theta$ (e) $\int_0^{\frac{\pi}{6}} \sin\theta \, d\theta$

- 18.(6pts) According to the limit comparison test for definite integrals, what can we say about the two improper integrals $\int_0^\infty \frac{x^2 3x + 10}{x^4 + 2x^2 + 4} dx$ and $\int_0^\infty \frac{x^4 3x^2 + 10}{x^6 + x^4 + 9} dx$?
- (a) Either they both converge or they both diverge.
- (b) They both converge.

- (c) They both diverge.
- (d) The first diverges but the second converges.
- (e) The first converges but the second diverges.

19.(6pts) Determine whether the following series converge or diverge.

1)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
, 2) $\sum_{n=1}^{\infty} \frac{1}{n!}$, 3) $\sum_{n=2}^{\infty} \frac{\sqrt[3]{n^3 - 1}}{3n - 1}$.

- (a) 1) 2) and 3) converge
- (b) 1) absolutely converges, 2) and 3) diverge
- (c) 1) conditionally converges, 2) and 3) diverge
- (d) 1) conditionally converges, 2) absolutely converges and 3) diverge
- (e) 1) 2) and 3) diverge

20.(6pts) Find the radius R of convergence of the following power series

$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} (x-5)^n .$$

- (a) R = 0

- (b) $R = \infty$ (c) R = 4 (d) R = 5 (e) $R = \sqrt{5}$

21.(6pts) All of the series below have radius of convergence 1. Which one conditionally converges at both endpoints of its interval of convergence?

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{n-1}}{n}$$
 (b) $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{n}$ (c) $\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{n^2}$ (d) $\sum_{n=1}^{\infty} (-1)^n \frac{x^{3n}}{n^3}$

(b)
$$\sum_{1}^{\infty} (-1)^n \frac{x^{2n-1}}{n}$$

(c)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{n^2}$$

(d)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{3n}}{n}$$

(e)
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{3n}}{n^3}$$

- 22.(6pts) What is the behavior of the series $\sum_{n=1}^{\infty} \frac{1}{(\arctan n)^2(1+n^2)}$?
- (a) It converges absolutely. (b) It converges conditionally.(c) It diverges.

23.(6pts) Give the first three nonzero terms of the Maclaurin series expansion of $e^{x^2} \sin x$.

(a) $x - \frac{1}{3}x^3 - \frac{1}{120}x^5$ (b) $1 + 3x^2 + \frac{1}{6}x^4$ (c) $x - x^3 + x^7$ (d) $x + \frac{5}{6}x^3 + \frac{41}{120}x^5$ (e) $x + x^2 - x^3$

24.(6pts) Which series conditionally converges?

- (a) $\sum_{n=2}^{\infty} \frac{1}{n^2 \ln n}$ (b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ (c) $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln n}$ (d) $\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n^2 \ln n}$ (e) $\sum_{n=2}^{\infty} \frac{1}{n^2 + n \ln n}$

25.(5pts) Find the sum of the following series

$$\sum_{n=0}^{\infty} \frac{2^{n-2}}{3^n} \ .$$

- (a) diverges
- (b) $\frac{3}{4}$ (c) $e^{2/3}$
- (d) 1
- (e) 3

Name:		_
Instructor-section:	Bullwinkle	

Math126, Final

May 6, 1999

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for two hours.
- You will only hand in this page the rest of the test is yours to keep.
- Be sure that you have all 14 pages of the test.

Good Luck!

P	Please	mark	your a	answei	rs with a	an X.						
1.	(a)	(ullet)	(c)	(d)	(e)		13.	(a)	(b)	(c)	(d)	(ullet)
2.	(a)	(b)	(ullet)	(d)	(e)		14.	(a)	(b)	(c)	(ullet)	(e)
3.	(a)	(b)	(c)	(ullet)	(e)		15.	(a)	(ullet)	(c)	(d)	(e)
4.	(ullet)	(b)	(c)	(d)	(e)		16.	(a)	(b)	(ullet)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(ullet)		17.	(a)	(b)	(ullet)	(d)	(e)
6.	(a)	(ullet)	(c)	(d)	(e)		18.	(ullet)	(b)	(c)	(d)	(e)
7.	(a)	(ullet)	(c)	(d)	(e)		19.	(a)	(b)	(c)	(ullet)	(e)
8.	(a)	(b)	(c)	(d)	(ullet)		20.	(a)	(b)	(ullet)	(d)	(e)
9.	(a)	(b)	(c)	(ullet)	(e)		21.	(a)	(ullet)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(ullet)		22.	(ullet)	(b)	(c)		
11.	(a)	(b)	(ullet)	(d)	(e)		23.	(a)	(b)	(c)	(ullet)	(e)
12.	(ullet)	(b)	(c)	(d)	(e)		24.	(a)	(b)	(ullet)	(d)	(e)
							25.	(a)	(ullet)	(c)	(d)	(e)