Math 126
Exam III
April 24, 2001
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converge or diverge? Show your reasoning and state clearly any theorems or tests you are
using.

(n)"

n2n

There are many solutions. Easiest is probably the root test: Z an with a,, =

n!
{a, = — — 00 asn — oo.
n

As this limit oo is > 1, the root test tells you that the series Z an diverges.
|

To see why lim % = 00, write it as
n—oo N,
—1)-(n—2)! -1
lim nn=1) (n=2) = lim — - lim (n—2)!'=1-00
n—o00 n2 n— 00 n n— 00
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It was also OK to have memorized that lim —- = oo for every k.
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|

n!
Do NOT use I'Hopital’s rule on lim — since you can not differentiate n!.
n—oo N,

|
Do NOT use the ratio test on lim ™ This test would not tell you anything about

n— o0 n2 '
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n n!
the sequence {—2} Rather, it tells you about the series Z — (with which you have no
n n

business here).
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Second solution: Some people looked at the series Z — and determined that it diverged
n
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(n2) > n_2 whenever % > 1 which happens for n > 3.
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Third solution: Once you have seen lim — = oo and its immediate consequence
n—oo M

using the ratio test:

— 00 as N — OQ.

By direct comparison,

lim ~——— = oo you can use the fact that lim a, # 0 to determine that the series
n—oo NN n—oo
diverges.



Fourth solution: The messiest way to proceed is via the ratio test, but it can be done
reasonably well.
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The term 1—>1asn—>ooandboth< ) — o0 and (n —1)! — oo as n — oc.
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Hence 21 — 0o > 1 and therefore the series diverges.

10. Does the integral

> dx
/0 Va(z+1)
converge or diverge?
We compare the function m with mL%
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This implies that the integral above converges if and only if fooo j—g converges. But
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lim —f = lim (—2)[:15_%]’{ = lim [2 — 2—=] = 2, so it converges and so does the
b—oo Jo x2 b—oo b—oo \/B

original integral.
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First calculate the radius of convergence. Use either the nth root test or the ratio

11. Find the interval of convergence of the series Z

test:
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Hence —1 < %2 < 1or —2 < 22 < 2. Several people had issues with going from z? to z. It

is true that 2% can not be negative so —2 < 22 < 2 can be replaced with 0 < 22 < 2 but

z? < 2 constrains z from being too negative. In particular, z2 < 2 implies —v2 < z < /2.
We now need to check the endpoints: the two series in question are
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This latter series is a p—series with p = 2 and therefore is convergent. Hence the interval
of convergence is [—v/2, v/2].

You were not asked, but we know that the convergence is absolute on the entire
interval [—v/2,/2]: it converges absolutely on (—+/2,v/2) by our theory and it converges
absolutely at the endpoints because that is what we just showed.




12.
(a) Show that

provided that |z| < 1.
(b) Find
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For part (a), this is a geometric series with first term 1 and ratio —x?. Hence, provided

|z| < 1 the series converges to
1

1+ 22

For part (b), we can integrate both sides and use the term-by-term integration theorem
for the series on the left. This gives
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The constant C' must be zero as we see from setting x = 0.

Now we plug in z = \/Lg < 1 to both sides and find
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