Answers to Exam I Spring 2000

- 11. Consider the function $f(x) = \sqrt{2x^4 + x^2}$.
 - a) Show that f is one to one on the domain $(0, \infty)$.
- b) Find the slope of the tangent line to the graph of the inverse function f^{-1} at the point $f^{-1}(6) = 2$.

First compute $\frac{d}{dx}\sqrt{2x^4 + x^2} = \frac{8x^3 + 2x}{2\sqrt{2x^4 + x^2}}$

- (a) Since x > 0, $8x^3 + 2x > 0$ so f is increasing on $(0, \infty)$. Therefore f is one-to-one. More precisely, if $f(x_1) = f(x_2)$ then it is not true that $x_1 > x_2$ (since then $f(x_1) > f(x_2)$ and this does not hold). It is also not true that $x_1 < x_2$, so it follows that $x_1 = x_2$.
- (b) The general formula says

$$\frac{d}{dx}f^{-1}(f(x)) = \frac{1}{f'(x)}$$

Hence we need to find an x such that f(x) = 6 and we are told that x = 2 will work (and since f is one-to-one, this is the only x that works). Hence the answer is

$$\frac{1}{f'(2)} = \frac{1}{\frac{8x^3 + 2x}{2\sqrt{2x^4 + x^2}}} \Big|_{x=2} = \frac{1}{\frac{8(2)^3 + 2(2)}{2\sqrt{2(2)^4 + (2)^2}}} = \frac{1}{\frac{8(8) + 4}{2\sqrt{2(16) + 4}}} = \frac{1}{\frac{68}{2\sqrt{36}}} = \frac{1}{\frac{34}{6}} = \frac{1}{\frac{17}{3}} = \frac{3}{17}$$

12. Find the derivative of the function

$$f(x) = \sqrt[x]{x} = x^{\frac{1}{x}} \quad .$$

This is an example of an exponential function that you do not understand very well, so rewrite it to base e: $x^{\frac{1}{x}} = e^{(\ln x)\frac{1}{x}} = e^{\frac{\ln x}{x}}$

Hence
$$\frac{d}{dx}x^{\frac{1}{x}} = e^{\frac{\ln x}{x}}\left(\frac{d}{dx}\frac{\ln x}{x}\right) = x^{\frac{1}{x}}\left(\frac{(\frac{1}{x})x - (\ln x)(1)}{x^2}\right) = x^{\frac{1}{x}-2}(1 - \ln x).$$

 $\frac{d}{dx}x^{\frac{1}{x}} = x^{\frac{1-2x}{x}}(1 - \ln x).$

13. The quantity of a radioactive substance decreases from 100% to 80% in three hours. Compute the half-life (the time until you have 50% of your sample left) as a quotient of logs.

Radioactive decay is an example of exponential decay so the equation governing the amount is

$$A(t) = A_0 e^{-kt}$$

The fact that we have decreased to 80% in 3 hours means that $A(3) = 0.8 \cdot A_0$. But $A(3) = A_0 e^{3k}$ so $e^{3k} = 0.8$. Then $3k = \ln(0.8)$ so $k = \frac{\ln(0.8)}{3}$. To find the half-life, T_0 , solve $A(T_0) = 0.5 \cdot A_0$ or $e^{kT_0} = 0.5$. Hence $kT_0 = \ln(0.5)$ so

$$T_0 = \frac{3\ln(0.5)}{\ln(0.8)}$$

14. Determine $\lim_{x\to\infty} \sqrt{e^x + x} - \sqrt{e^x + 1}$. Hint: Rewrite the expression using algebra and then use what you know about rates of growth.

This is not material we have covered yet, but

$$\sqrt{e^{x} + x} - \sqrt{e^{x} + 1} = \sqrt{e^{x} + x} - \sqrt{e^{x} + 1} \frac{\sqrt{e^{x} + x} + \sqrt{e^{x} + 1}}{\sqrt{e^{x} + x} + \sqrt{e^{x} + 1}}$$
$$= \frac{e^{x} + x - (e^{x} + 1)}{\sqrt{e^{x} + x} + \sqrt{e^{x} + 1}}$$
$$= \frac{x - 1}{\sqrt{e^{x} + x} + \sqrt{e^{x} + 1}}$$

and we knew from work at this point last year that exponentials grow more quickly than polynomials, so the limit is 0.

15. Express sec(arctan(x)) as an algebraic function of x.

Another problem of a sort to which we did not get for this exam, but ... To solve this problem, we first construct a triangle

From this triangle we see that $\sec(\arctan(x)) = \frac{\pm\sqrt{1+x^2}}{1} = \pm\sqrt{1+x^2}$. The arctan takes on values between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ and for these angles, the cos is positive, hence so is the sec and we get

$$\operatorname{sec}(\operatorname{arctan}(x)) = \sqrt{1 + x^2}$$