Answers to Exam I

Spring 2000

11. Consider the function $f(x)=\sqrt{2 x^{4}+x^{2}}$.
a) Show that f is one to one on the domain $(0, \infty)$.
b) Find the slope of the tangent line to the graph of the inverse function f^{-1} at the point $f^{-1}(6)=2$.

First compute $\frac{d}{d x} \sqrt{2 x^{4}+x^{2}}=\frac{8 x^{3}+2 x}{2 \sqrt{2 x^{4}+x^{2}}}$
(a) Since $x>0,8 x^{3}+2 x>0$ so f is increasing on $(0, \infty)$. Therefore f is one-to-one. More precisely, if $f\left(x_{1}\right)=f\left(x_{2}\right)$ then it is not true that $x_{1}>x_{2}$ (since then $f\left(x_{1}\right)>f\left(x_{2}\right)$ and this does not hold). It is also not true that $x_{1}<x_{2}$, so it follows that $x_{1}=x_{2}$.
(b) The general formula says

$$
\frac{d}{d x} f^{-1}(f(x))=\frac{1}{f^{\prime}(x)}
$$

Hence we need to find an x such that $f(x)=6$ and we are told that $x=2$ will work (and since f is one-to-one, this is the only x that works). Hence the answer is

$$
\frac{1}{f^{\prime}(2)}=\left.\frac{1}{\frac{8 x^{3}+2 x}{2 \sqrt{2 x^{4}+x^{2}}}}\right|_{x=2}=\frac{1}{\frac{8(2)^{3}+2(2)}{2 \sqrt{2(2)^{4}+(2)^{2}}}}=\frac{1}{\frac{8(8)+4}{2 \sqrt{2(16)+4}}}=\frac{1}{\frac{68}{2 \sqrt{36}}}=\frac{1}{\frac{34}{6}}=\frac{1}{\frac{17}{3}}=\frac{3}{17}
$$

12. Find the derivative of the function

$$
f(x)=\sqrt[x]{x}=x^{\frac{1}{x}}
$$

This is an example of an exponential function that you do not understand very well, so rewrite it to base e :

$$
x^{\frac{1}{x}}=e^{(\ln x) \frac{1}{x}}=e^{\frac{\ln x}{x}} .
$$

Hence $\frac{d}{d x} x^{\frac{1}{x}}=e^{\frac{\ln x}{x}}\left(\frac{d}{d x} \frac{\ln x}{x}\right)=x^{\frac{1}{x}}\left(\frac{\left(\frac{1}{x}\right) x-(\ln x)(1)}{x^{2}}\right)=x^{\frac{1}{x}-2}(1-\ln x)$.

$$
\frac{d}{d x} x^{\frac{1}{x}}=x^{\frac{1-2 x}{x}}(1-\ln x) .
$$

13. The quantity of a radioactive substance decreases from 100% to 80% in three hours. Compute the half-life (the time until you have 50% of your sample left) as a quotient of logs.

Radioactive decay is an example of exponential decay so the equation governing the amount is

$$
A(t)=A_{0} e^{-k t}
$$

The fact that we have decreased to 80% in 3 hours means that $A(3)=0.8 \cdot A_{0}$. But $A(3)=A_{0} e^{3 k}$ so $e^{3 k}=0.8$. Then $3 k=\ln (0.8)$ so $k=\frac{\ln (0.8)}{3}$. To find the half-life, T_{0}, solve $A\left(T_{0}\right)=0.5 \cdot A_{0}$ or $e^{k T_{0}}=0.5$. Hence $k T_{0}=\ln (0.5)$ so

$$
T_{0}=\frac{3 \ln (0.5)}{\ln (0.8)}
$$

14. Determine $\lim _{x \rightarrow \infty} \sqrt{e^{x}+x}-\sqrt{e^{x}+1}$.

Hint: Rewrite the expression using algebra and then use what you know about rates of growth.

This is not material we have covered yet, but....

$$
\begin{aligned}
\sqrt{e^{x}+x}-\sqrt{e^{x}+1} & =\sqrt{e^{x}+x}-\sqrt{e^{x}+1} \frac{\sqrt{e^{x}+x}+\sqrt{e^{x}+1}}{\sqrt{e^{x}+x}+\sqrt{e^{x}+1}} \\
& =\frac{e^{x}+x-\left(e^{x}+1\right)}{\sqrt{e^{x}+x}+\sqrt{e^{x}+1}} \\
& =\frac{x-1}{\sqrt{e^{x}+x}+\sqrt{e^{x}+1}}
\end{aligned}
$$

and we knew from work at this point last year that exponentials grow more quickly than polynomials, so the limit is 0 .
15. Express sec $(\arctan (x))$ as an algebraic function of x.

Another problem of a sort to which we did not get for this exam, but ...
To solve this problem, we first construct a triangle

From this triangle we see that $\sec (\arctan (x))=\frac{ \pm \sqrt{1+x^{2}}}{1}= \pm \sqrt{1+x^{2}}$. The arctan takes on values between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ and for these angles, the cos is positive, hence so is the sec and we get

$$
\sec (\arctan (x))=\sqrt{1+x^{2}} .
$$

