Some answers for Exam II.

11. Solve the equation

$$
t \frac{d y}{d t}+2 y=5 t^{3}
$$

with initial condition $y(1)=0$.
This is a problem from exam 1 since it is a first order linear differential equation. First put it in standard form

$$
\frac{d y}{d t}+\frac{2}{t} y=5 t^{2}
$$

so $P(t)=\frac{2}{t}$ and $Q(t)=5 t^{2}$.
Since $\int \frac{2}{t} d t=2 \ln t+C$, we may take $v(t)=e^{2 \ln t}=e^{\ln t^{2}}=t^{2}$. Next we have to find $\int v(t) Q(t) d t=\int 5 t^{5} d t=\frac{t^{6}}{6}+C$. Since $y(t)=\frac{1}{v(t)} \cdot \int v(t) Q(t) d t$,

$$
y(t)=\frac{t^{4}}{6}+\frac{C}{t^{2}} .
$$

12. Find just the partial fraction decomposition (not the integral) of

$$
\frac{2 x^{2}-4 x+1}{(x-1)^{2}(x-2)}
$$

First we need to set up the correct equation:

$$
\frac{2 x^{2}-4 x+1}{(x-1)^{2}(x-2)}=\frac{A}{(x-1)}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-2)}
$$

Clearing denominators we have the more manageable equation

$$
2 x^{2}-4 x+1=A \cdot(x-1)(x-2)+B \cdot(x-2)+C \cdot(x-1)^{2}
$$

There are two basic strategies to pursue here: plug in judiciously chosen values to get easy equations involving A, B and C; or equate coefficients to get three linear equations in three unknowns and solve them. Either works here but the easiest is plugging in values.

Plug in $x=1: 2-4+1=B(-1)$ so $B=1$.
Plug in $x=2: 8-8+1=C$ so $C=1$.
Plug in 0 and use the fact that $B=C=1: 1=A(2)+B(-2)+C$ or $1=2 A-1$, so $A=1$.
Equating coefficients goes as follows:

$$
\begin{aligned}
& x^{2}: 2=A+C . \\
& x^{1}:-4=-3 A+B-2 C \\
& x^{0}: 1=2 A-2 B+C
\end{aligned}
$$

There are many ways to proceed: here is one. Eliminate C using the first equation: $C=2-A$ so

$$
\begin{aligned}
& -4=-3 A+B-2(2-A) \text { or } 0=-A+B . \\
& 1=2 A-2 B+(2-A) \text { or }-1=A-2 B .
\end{aligned}
$$

Use the last equation to eliminate $A: A=2 B-1$ so $0=-(2 B-1)+B$ or $-1=-B$, $B=1$ and hence $A=2 B-1=1$ and $C=2-A=1$.
13. Using substitution, and then a trig substitution, find $\int_{1}^{e} \frac{d y}{y \sqrt{1+(\ln y)^{2}}}$

Substitute to get rid of the $\ln y: u=\ln y$ so $d u=\frac{d y}{y}$ and

$$
\int_{1}^{e} \frac{d y}{y \sqrt{1+(\ln y)^{2}}}=\int_{0}^{1} \frac{d u}{\sqrt{1+u^{2}}}
$$

Now do the trig. substitution $u=\tan \theta$ so that $1+u^{2}=1+\tan ^{2} \theta=\sec ^{2} \theta$. The arctan takes values in the interval $(-\pi / 2, \pi / 2)$ and in this interval the cos, and hence the sec, are positive so $\sqrt{1+u^{2}}=\sec \theta$. When $u=0, \theta=0$ and when $u=1, \theta=\pi / 4$. Finally, $d u=\sec ^{2} \theta d \theta$ so

$$
\int_{1}^{e} \frac{d y}{y \sqrt{1+(\ln y)^{2}}}=\int_{0}^{1} \frac{d u}{\sqrt{1+u^{2}}}=\int_{0}^{\pi / 4} \frac{\sec ^{2} \theta d \theta}{\sec \theta}=\int_{0}^{\pi / 4} \sec \theta d \theta
$$

But $\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C$ so

$$
\begin{aligned}
\int_{0}^{\pi / 4} \sec \theta d \theta & =\left.\ln |\sec \theta+\tan \theta|\right|_{0} ^{\pi / 4} \\
& =\ln (\sec \pi / 4+\tan \pi / 4)-\ln (\sec 0+\tan 0) \\
& =\ln (\sqrt{2}+1)-\ln (1+0) \\
& =\ln (\sqrt{2}+1)
\end{aligned}
$$

14. Does $\int_{1}^{\infty} \frac{(1+\sin x)}{x^{4 / 3}} d x$ converge or diverge? Why?

This type of problem is not on exam 2 but you ought to be able to do it by now. It is a first comparison test problem so first we have to guess whether it converges or diverges. Since it looks roughly like $\frac{1}{x^{4 / 3}}$ and we know this improper integral converges, we guess that our integral converges. There is no need to justify your guess at this stage: the justification comes when you demonstrate convergence.

Since we are trying for convergence, we need a function larger than the one we have. Since $\sin x$ is between -1 and 1 ,

$$
\frac{(1+\sin x)}{x^{4 / 3}} \leq \frac{2}{x^{4 / 3}}
$$

To prove our integral converges, it suffices to prove that

$$
\int_{1}^{\infty} \frac{2}{x^{4 / 3}} d x
$$

converges.

$$
\begin{aligned}
\int_{1}^{\infty} \frac{2}{x^{4 / 3}} d x & =\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{2}{x^{4 / 3}} d x=\lim _{t \rightarrow \infty} \frac{t^{-4 / 3+1}}{-4 / 3+1}-\frac{1^{-4 / 3+1}}{-4 / 3+1} \\
& =\lim _{t \rightarrow \infty} \frac{t^{-1 / 3}}{-1 / 3}-\frac{1^{-1 / 3}}{-1 / 3}=\lim _{t \rightarrow \infty}-3 t^{-1 / 3}+3=4
\end{aligned}
$$

since $\lim _{t \rightarrow \infty} t^{-1 / 3}=0$. Since $\int_{1}^{\infty} \frac{2}{x^{4 / 3}} d x$ converges, and since $\frac{(1+\sin x)}{x^{4 / 3}} \leq \frac{2}{x^{4 / 3}}$ on the interval $[1, \infty)$, the first comparison test shows $\int_{1}^{\infty} \frac{(1+\sin x)}{x^{4 / 3}} d x$ converges.
15. Determine the convergence of the sequence $\left\{a_{n}\right\}$ with $a_{n}=\frac{1}{n^{2}} \int_{1}^{n} x d x$.

This will be taken up in Chapter 8.

