Exam I

February 15, 2001
11.
(a) First we need to determine the corner points. They are $\left(\frac{1}{4}, 4\right),(1,4),(4,1)$ and $\left(4, \frac{1}{4}\right)$. It is also good to note at this point that the integral will need to be split into two pieces. We also note that we may take the density to be 1 in this problem. Hence if we integrate along the x-axis we get for the area (= mass)

$$
\begin{aligned}
\text { Area } & =\int_{\frac{1}{4}}^{1}\left(4-\frac{1}{x}\right) d x+\int_{1}^{4}\left(\frac{4}{x}-\frac{1}{x}\right) d x \\
& =[4 x-\ln x]_{\frac{1}{4}}^{1}+[3 \ln x]_{1}^{4} \\
& =(4-\ln 1)-\left(1-\ln \frac{1}{4}\right)+3 \ln 4-3 \ln 1 \\
& =3+\ln \frac{1}{4}+3 \ln 4=3-\ln 4+3 \ln 4=3+2 \ln 4
\end{aligned}
$$

If you preferred to integrate up the y-axis you get an identical formula except that everywhere you see an x above, put a y.
(b) You have four choices. Do you want to compute the moment about the x-axis or the y-axis and do you want to integrate along the x-axis or the y-axis? To compute the moment about the y-axis and integrate along the x-axis, proceed as follows.

$$
\begin{aligned}
\text { Moment }_{y} & =\int_{\frac{1}{4}}^{1} x \underbrace{1}_{\substack{\text { dist. } \\
\text { from } \\
y \text {-axis }}} \underbrace{\left(4-\frac{1}{x}\right) d x}_{\text {mass of rect. }}+\int_{1}^{4} x\left(\frac{4}{x}-\frac{1}{x}\right) d x \\
& =\left[2 x^{2}-x\right]_{\frac{1}{4}}^{1}+[3 x]_{1}^{4}=2-1-\frac{2}{16}+\frac{1}{4}+12-3=\frac{81}{8}
\end{aligned}
$$

If you choose instead to calculate the moment about the x-axis while still integrating along the x-axis you would proceed as follows.

$$
\begin{aligned}
\operatorname{Moment}_{x} & =\int_{\frac{1}{4}}^{1} \underbrace{\frac{1}{2}\left(4+\frac{1}{x}\right)}_{\begin{array}{c}
\text { dist. from } \\
\text { center of mass } \\
\text { to } x \text {-axis }
\end{array}} \underbrace{\left(4-\frac{1}{x}\right) d x}_{\text {mass of rect. }}+\int_{1}^{4} \frac{1}{2}\left(\frac{4}{x}+\frac{1}{x}\right)\left(\frac{4}{x}-\frac{1}{x}\right) d x \\
& =\int_{\frac{1}{4}}^{1} 8-\frac{1}{2 x^{2}} d x+\int_{1}^{4} \frac{15}{2 x^{2}} d x \\
& =\left[8 x+\frac{1}{2 x}\right]_{\frac{1}{4}}^{1}+\left[\frac{-15}{2 x}\right]_{1}^{4}=\left(8+\frac{1}{2}\right)-(2+2)+\left(-\frac{15}{8}-\left(\frac{-15}{2}\right)\right) \\
& =4+\frac{4}{8}+\frac{-15}{8}+\frac{60}{8}=\frac{32}{8}+\frac{4}{8}+\frac{-15}{8}+\frac{60}{8}=\frac{96-15}{8}=\frac{81}{8}
\end{aligned}
$$

If you want the integrals for integrating along the y-axis, just switch x and y in the formulae above.
(c) By symmetry, the moment about the x-axis is the same as the moment about the y-axis and the center of mass has equal x and y coordinates, each one being

$$
\frac{\frac{81}{8}}{3+2 \ln 4}
$$

12. Complete the square: $x^{2}+2 x+2=(x+1)^{2}+1$. This suggests the trig. substitution $\tan \theta=x+1: d x=\sec ^{2} \theta d \theta$ and $x^{2}+2 x+2=(x+1)^{2}+1=\tan ^{2} \theta+1=\sec ^{2} \theta$. When $x=-1, x+1=0=\tan \theta$, so $\theta=0$; when $x=0, x+1=1=\tan \theta$, so $\theta=\frac{\pi}{4}$. Hence

$$
\int_{-1}^{0} \frac{1}{x^{2}+2 x+2} d x=\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} \theta}{\sec ^{2} \theta} d \theta=\int_{0}^{\frac{\pi}{4}} d \theta=\left.\theta\right|_{0} ^{\frac{\pi}{4}}=\frac{\pi}{4}-0=\frac{\pi}{4}
$$

13. Separating variables gives $\frac{d y}{\sqrt{1-y^{2}}}=x$: integrating gives

$$
\arcsin (y)=\frac{x^{2}}{2}+C
$$

Now since $y(0)=0$ we see that the constant $C=0$.
Hence the unique function is

$$
y=\sin \left(\frac{x^{2}}{2}\right)
$$

and $y(1)=\sin \left(\frac{1}{2}\right)$.
14. To find the general solution to the differential equation

$$
y^{\prime}=\frac{2 y}{x}+x \quad(x>0)
$$

first put it into standard form:

$$
y^{\prime}+\frac{-2}{x} \cdot y=x
$$

so $P(x)=\frac{-2}{x}$ and $Q(x)=x$. Then find the integrating factor $v=e^{\int P(x) d x}$.
$\int \frac{-2}{x}=-2 \ln x+C$ so we may take $v(x)=e^{-2 \ln x}$ which is $v(x)=x^{-2}$. Then we do the second integral $\int v(x) Q(x) d x=\int x^{-2} \cdot x d x=\int x-1 d x=\ln x+C$. Since we are told $x>0$, there is no need for absolute values in the $\ln x$. Finally,

$$
y(x)=x^{-2}(\ln x+C)
$$

is the general solution.

