Math 126

Exam III
April 24, 2001
9.

$$
\sum_{n=1}^{\infty} \frac{(n!)^{n}}{\left(n^{2 n}\right)}
$$

converge or diverge? Show your reasoning and state clearly any theorems or tests you are using.

There are many solutions. Easiest is probably the root test: $\sum a_{n}$ with $a_{n}=\frac{(n!)^{n}}{n^{2 n}}$.
$\sqrt[n]{a_{n}}=\frac{n!}{n^{2}} \rightarrow \infty \quad$ as $n \rightarrow \infty$.
As this limit ∞ is >1, the root test tells you that the series $\sum a_{n}$ diverges.
To see why $\lim _{n \rightarrow \infty} \frac{n!}{n^{2}}=\infty$, write it as

$$
\lim _{n \rightarrow \infty} \frac{n(n-1) \cdot(n-2)!}{n^{2}}=\lim _{n \rightarrow \infty} \frac{n-1}{n} \cdot \lim _{n \rightarrow \infty}(n-2)!=1 \cdot \infty
$$

It was also OK to have memorized that $\lim _{n \rightarrow \infty} \frac{n!}{n^{k}}=\infty$ for every k.
Do NOT use l'Hôpital's rule on $\lim _{n \rightarrow \infty} \frac{n!}{n^{2}}$ since you can not differentiate n !.
Do NOT use the ratio test on $\lim _{n \rightarrow \infty} \frac{n!}{n^{2}}$. This test would not tell you anything about the sequence $\left\{\frac{n!}{n^{2}}\right\}$. Rather, it tells you about the series $\sum \frac{n!}{n^{2}}$ (with which you have no business here).
Second solution: Some people looked at the series $\sum \frac{n!}{n^{2}}$ and determined that it diverged using the ratio test: $\frac{\frac{(n+1)!}{(n+1)^{2}}}{\frac{n!}{n^{2}}}=\frac{n^{2}}{n+1} \rightarrow \infty$ as $n \rightarrow \infty$.

By direct comparison, $\frac{(n!)^{n}}{n^{2 n}}>\frac{n!}{n^{2}}$ whenever $\frac{n!}{n^{2}}>1$ which happens for $n>3$.
Third solution: Once you have seen $\lim _{n \rightarrow \infty} \frac{n!}{n^{2}}=\infty$ and its immediate consequence $\lim _{n \rightarrow \infty} \frac{(n!)^{n}}{n^{2 n}}=\infty$ you can use the fact that $\lim _{n \rightarrow \infty} a_{n} \neq 0$ to determine that the series diverges.

Fourth solution: The messiest way to proceed is via the ratio test, but it can be done reasonably well.

$$
\begin{aligned}
\frac{a_{n+1}}{a_{n}} & =\frac{((n+1)!)^{n+1} n^{2 n}}{(n+1)^{2(n+1)}(n!)^{n}}=\frac{(n+1)^{n+1}(n!)^{n+1} n^{2 n}}{(n+1)^{2 n+2}(n!)^{n}}=\frac{n^{2 n}}{(n+1)^{n+1}} \cdot n! \\
& =\left(\frac{n^{2}}{n+1}\right)^{n} \cdot \frac{n!}{n+1}=\left(\frac{n^{2}}{n+1}\right)^{n} \cdot \frac{n}{n+1} \cdot(n-1)!
\end{aligned}
$$

The term $\frac{n}{n+1} \rightarrow 1$ as $n \rightarrow \infty$ and both $\left(\frac{n^{2}}{n+1}\right)^{n} \rightarrow \infty$ and $(n-1)!\rightarrow \infty$ as $n \rightarrow \infty$. Hence $\frac{a_{n+1}}{a_{n}} \rightarrow \infty>1$ and therefore the series diverges.
10. Does the integral

$$
\int_{0}^{\infty} \frac{d x}{\sqrt{x}(x+1)}
$$

converge or diverge?
We compare the function $\frac{1}{\sqrt{x}(x+1)}$ with $\frac{1}{x^{\frac{3}{2}}}$
$\lim _{x \rightarrow \infty} \frac{x^{\frac{3}{2}}}{\sqrt{x}(x+1)}=\lim _{x \rightarrow \infty} \frac{x^{\frac{3}{2}}}{x^{\frac{3}{2}}+x^{\frac{1}{2}}}=1$
This implies that the integral above converges if and only if $\int_{0}^{\infty} \frac{d x}{x^{\frac{3}{2}}}$ converges. But $\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{d x}{x^{\frac{3}{2}}}=\lim _{b \rightarrow \infty}(-2)\left[x^{-\frac{1}{2}}\right]_{1}^{b}=\lim _{b \rightarrow \infty}\left[2-2 \frac{1}{\sqrt{b}}\right]=2$, so it converges and so does the original integral.
11. Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{x^{2 n}}{2^{n} n^{2}}$.

First calculate the radius of convergence. Use either the nth root test or the ratio test:

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\frac{x^{2 n}}{2^{n} n^{2}}}=\lim _{n \rightarrow \infty} \frac{x^{2}}{2 \sqrt[n]{n^{2}}}=\lim _{n \rightarrow \infty} \frac{x^{2}}{2(\sqrt[n]{n})^{2}}=\frac{x}{2}
$$

OR

$$
\lim _{n \rightarrow \infty} \frac{\frac{x^{2(n+1)}}{2^{n+1}(n+1)^{2}}}{\frac{x^{2 n}}{2^{n} n^{2}}}=\lim _{n \rightarrow \infty} \frac{x^{2}}{2} \cdot \frac{n^{2}}{(n+1)^{2}}=\frac{x^{2}}{2}
$$

Hence $-1<\frac{x^{2}}{2}<1$ or $-2<x^{2}<2$. Several people had issues with going from x^{2} to x. It is true that x^{2} can not be negative so $-2<x^{2}<2$ can be replaced with $0 \leq x^{2}<2$ but $x^{2}<2$ constrains x from being too negative. In particular, $x^{2}<2$ implies $-\sqrt{2}<x<\sqrt{2}$.

We now need to check the endpoints: the two series in question are

$$
\sum_{n=1}^{\infty} \frac{(\pm \sqrt{2})^{2 n}}{2^{n} n^{2}}=\sum_{n=1}^{\infty} \frac{2^{n}}{2^{n} n^{2}}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

This latter series is a p-series with $p=2$ and therefore is convergent. Hence the interval of convergence is $[-\sqrt{2}, \sqrt{2}]$.

You were not asked, but we know that the convergence is absolute on the entire interval $[-\sqrt{2}, \sqrt{2}]$: it converges absolutely on $(-\sqrt{2}, \sqrt{2})$ by our theory and it converges absolutely at the endpoints because that is what we just showed.
12.
(a) Show that

$$
\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}=\frac{1}{1+x^{2}}
$$

provided that $|x|<1$.
(b) Find

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(\sqrt{3})^{2 n+1}}
$$

For part (a), this is a geometric series with first term 1 and ratio $-x^{2}$. Hence, provided $|x|<1$ the series converges to

$$
\frac{1}{1+x^{2}}
$$

For part (b), we can integrate both sides and use the term-by-term integration theorem for the series on the left. This gives

$$
\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}=\arctan (x)+C
$$

The constant C must be zero as we see from setting $x=0$.
Now we plug in $x=\frac{1}{\sqrt{3}}<1$ to both sides and find

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(\sqrt{3})^{2 n+1}}=\arctan \left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6}
$$

