Multiple Choice

1. (6 pts.) What can be said about the improper integral

$$
\int_{1}^{\infty} x e^{-x} d x ?
$$

(a) It converges to e^{-1}.
(b) It diverges.
(c) It converges to π.
(d) It converges to 1 . (e) It converges to $2 e^{-1}$.
2. (6 pts .) The sequence given by $a_{n}=\left(\frac{n}{n+1}\right)^{n}$
(a) converges to π.
(b) converges to 1 .
(c) diverges.
(d) converges to e^{-1}.
(e) converges to e^{2}.
3. (6 pts.) The series $\sum_{n=1}^{\infty} \frac{2}{5^{n+2}}$
(a) converges to $\frac{1}{50}$.
(b) converges to π.
(c) diverges.
(d) converges to 2 .
(e) converges to $\frac{1}{10}$.
4. (6 pts .) The sequence $a_{n}=\frac{2^{n}}{(n+1)!}$ for $n \geq 1$ is
(a) nondecreasing and convergent.
(b) nonincreasing and convergent.
(c) nonincreasing and divergent.
(d) neither nonincreasing nor nondecreasing.
(e) nondecreasing and divergent.
5. (6 pts.) The series $\sum_{n=2}^{\infty} \frac{1}{\ln n}$
(a) converges to 1 .
(b) diverges.
(c) converges to π.
(d) converges to 25 .
(e) converges to e.
6.(6 pts.) Let $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ be two series with nonnegative terms. Which of the following is always a correct statement?
(a) If $\sum_{n=1}^{\infty} a_{n}$ diverges and $\sum_{n=1}^{\infty} b_{n}$ diverges then $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)$ converges.
(b) If $\sum_{n=1}^{\infty} a_{n}$ converges and $\sum_{n=1}^{\infty} b_{n}$ converges then $\sum_{n=1}^{\infty} \frac{a_{n}}{b_{n}}$ converges provided all $b_{n} \neq 0$.
(c) If $\sum_{n=1}^{\infty} a_{n}$ converges and $\sum_{n=1}^{\infty} b_{n}$ diverges then $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ diverges.
(d) If $\sum_{n=1}^{\infty} a_{n}$ diverges and $\sum_{n=1}^{\infty} b_{n}$ diverges then $\sum_{n=1}^{\infty} \frac{a_{n}}{b_{n}}$ diverges.
(e) None of the above.
7. (6 pts .) For which values of x does the power series

$$
\sum_{n=1}^{\infty}(\ln n)\left(\frac{x}{2}\right)^{n}
$$

converge?
(a) $-1<x<1$.
(b) all values of x.
(c) $x=0$ only.
(d) $-2<x<2$.
(e) $\quad \frac{-1}{\ln 2}<x<\frac{1}{\ln 2}$.
8. (6 pts.) The series

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}
$$

(a) diverges because $\lim _{n \rightarrow \infty} \frac{(-1)^{n+1}}{\sqrt{n}} \neq 0$.
(b) converges absolutely.
(c) diverges because the terms alternate.
(d) diverges even though $\lim _{n \rightarrow \infty} \frac{(-1)^{n+1}}{\sqrt{n}}=0$.
(e) does not converge absolutely but does converge conditionally.

Partial Credit

9.(13 pts.) Does the series

$$
\sum_{n=1}^{\infty} \frac{(n!)^{n}}{\left(n^{2 n}\right)}
$$

converge or diverge? Show your reasoning and state clearly any theorems or tests you are using.
10.(13 pts.) Does the integral

$$
\int_{1}^{\infty} \frac{d x}{\sqrt{x}(1+x)}
$$

converge or diverge? Show all of your work and state clearly and precisely any theorems you are using.
11.(13 pts.) Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{x^{2 n}}{2^{n} n^{2}}$. Be sure to check the end points.
12.(13 pts.)
(a) Show that

$$
\sum_{n=0}^{\infty}(-1)^{n} x^{2 n}=\frac{1}{1+x^{2}}
$$

provided that $|x|<1$.
(b) Find

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)(\sqrt{3})^{2 n+1}}
$$

(Hint: First use term-by-term integration on the series in part (a).)

Name: \qquad
Instructor: \qquad

Math 126
Exam III
April 24, 2001

- The Honor Code is in effect for this examination. All work is to be your own.
- No calculators.
- The exam lasts for one hour.
- Be sure that your name is on every page in case pages become detached.
- Be sure that you have all 9 pages of the test.

Good Luck!

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)
(b)
(c)
(d)
(•)
2. (a)
(b)
(c)
(•)
(e)
3. (•)
(b)
(c)
(d)
(e)
4. (a)
(•)
(c)
(d)
(e)
5. (a)
(•)
(c)
(d)
(e)
6. (a)
(b)
(•)
(d)
(e)
7. (a)
(b)
(c)
(•)
(e)
8. (a)
(b)
(c)
(d)
(•)

DO NOT WRITE IN THIS BOX!

Total multiple choice: \qquad
9. \qquad
10. \qquad
11. \qquad
12. \qquad

Total:

