
Math. 126 Quiz #1
January 23, 2001

Consider the region below the curve y = cosx between −π
2 and π

2 and above the x–axis.
Assume the density is constant, δ.
a) Find the mass of this region.
b) Write a definite integral whose value will be the moment about the y–axis of this

region. Give a short reason why the moment about the y–axis of this region is 0 even
though you do not yet know how to do the integral.

c) Write a definite integral whose value will be the moment about the x–axis of this
region. You should realize that we have talked about evaluating this integral, but
don’t do it today.

d) Write a definite integral whose value will be the volume obtained by rotating this
region about the x–axis. Use the disk method from last semester.

Remark for after the quiz. The proportionality relation between the moment about
the x–axis and the volume of the solid obtained by rotation about the x–axis is true in
general and goes back to Pappus of Alexandria around 300AD.

Solution

(a) Mass = δ

∫ π
2

−π
2

cosx dx = δ(− sinx)
∣∣∣π

2

−π
2

= δ
(
1 − (−1)

)
= 2δ

(b) Momenty = δ

∫ π
2

−π
2

x cosx dx = 0 since the region is symmetric about the y–axis.

(c) Momentx = δ

∫ π
2

−π
2

1

2
cos2 x dx

The integral can be evaluated as follows:δ

∫ π
2

−π
2

1

4

(
1+cos(2x)

)
=

δ

4
x−1

2
sin 2x

∣∣∣π
2

−π
2

=
πδ

4

(d) V olume = π

∫ π
2

−π
2

cos2 x dx



Math. 126 Quiz #2
January 30, 2001

It is true that for positive integers 2, 3, 4, . . . the following holds.

(∗) 1/2 + 1/3 + · · · + 1/n < lnn < 1 + 1/2 + 1/3 + · · · + 1/n

1. Explain why.
2. Given that 35 = 243 and that 5.0 < 1/2 + 1/3 + · · · + 1/243 use (∗) with n = 35 and

the laws of logarithms to argue e < 3.

Solution

1. By definition lnn =

∫ n

1

dx

x
. Recall 1

2 + 1
3 + · · ·+ 1

n is the right–hand Riemann sum for

the partition of [1, n] into n pieces of length 1: f ′(x) = −1
x2 < 0. 1 + 1

2 + 1
3 + · · ·+ 1

n−1
is the left–hand Riemann sum for the partition of [1, n] into n pieces of length 1.
The graph of f(x) = 1

x is decreasing since f ′(x) = −1
x2 < 0, so the right–hand Riemann

sum is less than the integral and the left hand Riemann sum is greater. Hence
1
2 + 1

3 + · · · + 1
n < lnn < 1 + 1

2 + 1
3 + · · · + 1

n−1 < 1 + 1
2 + 1

3 + · · · + 1
n .

2. Using the facts given, we see 5.0 < 1
2 + 1

3 + · · ·+ 1
35 < ln 35. Hence 5.0 < ln 35 = 5 · ln 3

and therefore 1 < ln 3. Since ln e = 1 we see ln e < ln 3 and since ln is an increasing
function (d ln x

dx = 1
x > 0) e < 3.



Math. 126 Quiz #3
February 6, 2001

1. Solve 65k = 4. Leave your answer as a quotient involving numbers and natural logs
of numbers.

2. Compute
dy
dx

where y = xex .

Solution

1. ln 65k = ln 4 so 5k ln 6 = ln 4 or k =
ln 4

5 ln 6

2. Rewrite y = xex = ee
x ln x so

dy

dx
=

(
ee

x ln x
)d ex lnx

dx
.

d ex ln x
dx = ex lnx + ex 1

x , so
dy

dx
= xex

(
ex lnx +

ex

x

)

Math. 126 Quiz #4
February 13, 2001

Solve the initial value problem

x
dy

dx
= x2cosx− y

y(π) = 1

Solution

First put it in standard form:
dy

dx
+

y

x
= x cosx

Then P =
1

x
and Q = x cosx. Compute

∫
Pdx = lnx + C so we may take v = eln x = x.

Then

∫
vQdx =

∫
cosx dx = sinx + C.

Hence y =
1

v

∫
vQdx =

sinx

x
+

C

x
so y(π) =

sinπ

π
+

C

π
=

C

π
= 1. Hence C = π and

y =
sinx

x
+

π

x



Math. 126 Quiz #5
February 27, 2001

Evaluate the integral ∫
sin

(√
x
)
dx .

Hint: First do a substitution and then an integration by parts.

Solution

Substitute w =
√
x: then dw =

dx

2
√
x

, so 2
√
x dw = dx and 2wdw = dx. Hence∫

sin
(√

x
)
dx = 2

∫
w sin(w) dw

Parts:
u = w du = dw

dv = sin(w)dw v = − cos(w)
so

2

∫
w sin(w) dw = − 2w cosw + 2

∫
cosw dw

= − 2w cosw + 2 sinw + C

Finally ∫
sin

(√
x
)
dx = −2

√
x cos

√
x + 2 sin

√
x + C .



Math. 126 Quiz #6
March 6, 2001

Expand
2x3 − 2x2 + 3x + 1

(x2 − x− 2)(x2 + 1)

as a sum of partial fractions.

Solution

2x3 − 2x2 + 3x + 1

(x2 − x− 2)(x2 + 1)
=

A

(x− 2)
+

B

(x + 1)
+

Cx + D

(x2 + 1)

2x3 − 2x2 + 3x + 1 = A(x + 1)(x2 + 1) + B(x− 2)(x2 + 1) + (Cx + D)(x + 1)(x− 2)

Equate coefficients:
x3 :2 = A + B + C

x2 : − 2 = A− 2B + D − C

x1 :3 = A + B − 2C −D

x0 :1 = A− 2B − 2D

From x3: A = 2 −B − C so the other equations become
x2 : − 2 = 2 −B − C − 2B + D − C

− 4 = −3B − 2C + D

x1 : 3 = 2 −B − C + B − 2C −D

1 = −3C −D

x0 : 1 = 2 −B − C − 2B − 2D

− 1 = −3B − 2D

From x1: D = −3C − 1 so
x2 : − 4 = −3B − 2C + −3C − 1

− 3 = −3B − 5C

x0 : − 1 = −3B − 2(−3C − 1)

− 3 = −3B + 6C

It follows that C = 0 and B = 1, whence D = −1 and A = 1.
Plug in:

x = 2 : 16 − 8 + 6 + 1 = A(3)(5) or 15 = 15A or A = 1 .
x = −1 : −2 − 2 − 3 + 1 = B(−3)(2) or −6 = (−6)B or B = 1 .
x = 0 : 1 = A + (−2)B + (−2)D or 1 = −1 + (−2)D or D = −1 .
x = 1 : 2− 2 + 3 + 1 = A(2)(2) +B(−1)(2) + (C +D)(2)(−1) or 4 = 4− 2− 2(C − 1)

or 2 = 2 − 2C or C = 0 .



Math 126, Quiz #7
March 27, 2001

Which improper integrals below converge and which diverge? A brief indication of your
reasoning should be given.

a)

∫ ∞

0

e−x3

dx

b)

∫ ∞

0

1
3
√
x2 + 1

dx

Solution
a)

∫ ∞

0

e−x3

dx converges if and only if

∫ ∞

1

e−x3

dx converges.

On the interval [1,∞), x ≥ 1 so x2 ≥ 1 and x3 ≥ x so ex ≤ ex
3

so e−x3 ≤ e−x. Now∫ ∞

1

e−x dx converges since lim
t→∞

∫ t

1

e−x dx = lim
t→∞

−e−x
∣∣∣t
1

= e−1 − lim
t→∞

e−t = e−1 − 0. By

the first comparison test for improper integrals,

∫ ∞

1

e−x3

dx converges and hence so does∫ ∞

0

e−x3

dx.

b) Roughly speaking 1
3
√
x2 + 1

behaves near ∞ like x−2/3. More precisely,

lim
x→∞

1
3
√
x2 + 1

x−2/3
= lim

x→∞
x2/3

3
√
x2 + 1

= lim
x→∞

1

3

√
1 + 1

x2

= 1. Since 0 < 1 < ∞ we would like to

use the limit comparison test, comparing the integral for 1
3
√
x2 + 1

with the one for x−2/3.

Annoyingly, x−2/3 has an additional singularity at 0 so we proceed as follows.∫ ∞

0

1
3
√
x2 + 1

dx converges if and only if

∫ ∞

1

1
3
√
x2 + 1

dx converges and by the

limit comparison test for improper integrals,

∫ ∞

1

1
3
√
x2 + 1

dx converges if and only if∫ ∞

1

x−2/3 dx converges.

But

∫ ∞

1

x−2/3 dx = lim
t→∞

x1/3

1/3

∣∣∣t
1

lim
t→∞

3−3t1/3 = 3−∞ so

∫ ∞

1

x−2/3 dx diverges and

hence so does

∫ ∞

0

1
3
√
x2 + 1

dx.



Math. 126 Quiz #8
April 3, 2001

For each of the series below, do two things. First compute lim
n→∞

an and then use this

calculation to say if you are certain that
∞∑

n=1

an diverges or if the limit calculation does

not suffice to say if the series converges or diverges. Just circle diverges or can not tell
after the series for the second part of each question

A. an = 1√
n
:

a. lim
n→∞

an =

b.
∞∑

n=1

an diverges can not tell

B. a1 = 0 and an = an−1 + 1 for all n ≥ 2:

Solution

A. lim
n→∞

1√
n

=

√
lim
n→∞

1

n
=

√
0 = 0. Since the terms go to 0, we can not tell if the

series diverges or converges. We know from our later work that this is a p–series with
p = 1

2 ≤ 1 so it does diverge, but not because of this calculation.
B. Since an > an−1 the series is increasing so either lim

n→∞
an = ∞ or it exists. In either

case, lim
n→∞

an = lim
n→∞

an+1 = lim
n→∞

an + 1, which implies lim
n→∞

an = ∞. A second way

to do this calcualtion is to observe that an = n − 1 and hence lim
n→∞

an = ∞. In any

case lim
n→∞

an �= 0 so we are sure that this series diverges.



Math. 126 Quiz #9
April 10, 2001

Show that
∞∑

n=1

(−1)n+1

√
n2 + 1

converges by checking the hypotheses of the Alternating

Series Test.
Then show the calcualtions needed to find an m such that

0 <

∞∑
n=1

(−1)n+1

√
n2 + 1

−
m∑

n=1

(−1)n+1

√
n2 + 1

< 0.01

Solution
For the Alternating Series Test, an = (−1)n+1

√
n2+1

= (−1)n+1un with un = 1√
n2+1

> 0, so

the series is alternating. The limit lim
n→∞

1√
n2 + 1

= 0 so the terms go to 0. Finally we check

that un+1 < un: let f(x) = 1√
x2+1

so un = f(n). Compute f ′(x) = − 3
2 (x2 + 1)−3/2(2x)

and f ′(x) > 0 for x > 0. Hence f is decreasing on the interval [0,∞) so un+1 = f(n+1) >
f(n) = un.

Since the difference indicated is positive, m must be odd and for odd m

0 <
∞∑

n=1

(−1)n+1

√
n2 + 1

−
m∑

n=1

(−1)n+1

√
n2 + 1

< um+1

Hence any m odd such that um+1 ≤ 0.01 = 1
100 will suffice: 1√

m2+1
≤ 1

100 or 1
m2+1 ≤ 1

104 ,

or 104 ≤ m2 + 1. The smallest integer satisfying this inequality is m = 100 so m = 101 is
the smallest integer satisfying both our requirements.



Math. 126 Quiz #10
April 17, 2001

Compute the interval of convergence of each of the following power series. For each series,
indicate where the convergence is conditional and where it is absolute.

a.
∞∑

n=0

x2n

7n

b.

∞∑
n=0

x2n

(n + 1)7n

Solution

First compute the radii of convergence. For a. we calculate lim
n→∞

n

√
x2n

7n
= lim

n→∞
x2

7

so R2

7 = 1 or R =
√

7 . For b. we calculate lim
n→∞

n

√
x2n

(n + 1)7n
= lim

n→∞
1

n
√
n + 1

· x
2

7
=

x2

7

so againR =
√

7 .

At the endpoints in a. the series to consider are

∞∑
n=0

(±
√

7
2n

7n
=

∞∑
n=0

1 and both of

these series diverge. At the endpoints in part b. the series to consider are
∞∑

n=0

(±
√

7
2n

(n + 1)7n
=

∞∑
n=0

1

n + 1
. Both of these series are the harmonic series and thus diverge. Therefore, in

both cases, the interval of convergence is (−
√

7,
√

7).
By our theory, the convergence is absolute on the open interval (always the case for

a power series) so in both cases the convergence is absolute on (−
√

7,
√

7) and divergent
elsewhere. Neither series conditionally converges anywhere.



Math. 126 Quiz #11
May 1, 2001

The MacLaurin series for sinx is

sinx =

∞∑
n=1

(−1)nx2n+1

(2n + 1)!

a. What is the radius of convergence of this series?
(Just an answer is sufficient - no reason need be given.)

b. Write down the MacLaurin series for sinx
x . Give a reason why it is the MacLaurin

series.

c. Write down the MacLaurin series for the function

∫ x

0

sin t2

t2
dt.

Solution
a. The radius of convergence of the MacLaurin series for sinx is ∞. If you want to check

this:

lim
n→∞

x2(n+1)+1

(2(n + 1) + 1)!

x2n+1

(2n + 1)!

= lim
n→∞

x2n+3

(2n + 3)!

x2n+1

(2n + 1)!

= lim
n→∞

x2 · (2n + 1)!

(2n + 3)!

= lim
n→∞

x2

(2n + 3)(2n + 2)
= 0

b.
sinx

x
=

∞∑
n=1

(−1)nx2n

(2n + 1)!
is a valid equation since we are just dividing an equality (the

MacLaurin series for sinx) by x. Hence we have a power series centered at 0 for sinx
x

and this must be the MacLaurin series because a power series is its own Taylor series.

Remark: To be completely precise, we should have written the function sinx
x as

f(x) =

{
sinx
x x �= 0

1 x = 0

We know from 125 that f(x) is continuous at 0. The power series certainly represents f(x)
if x �= 0 and equality at x = 0 follows by evaluating the power series at 0. Hence the power
series represents f(x) everywhere and is therefore its MacLaurin series. Notice that as a
side benefit we have shown that f(x) is infinitely differentiable (this being obvious except
at x = 0).

c. We are actually using the function f(x) from the remark but we will write it as sinx
x .

Using term–for–term integration,

∫ x

0

sin t2

t2
dt =

∞∑
n=1

(−1)nx2n+1

(2n + 1) · (2n + 1)!

is a valid equation and hence the series on the right is the MacLaurin series for the
function on the left.




