Math. 126 Quiz \#1

January 23, 2001
Consider the region below the curve $y=\cos x$ between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ and above the x-axis. Assume the density is constant, δ.
a) Find the mass of this region.
b) Write a definite integral whose value will be the moment about the y-axis of this region. Give a short reason why the moment about the y-axis of this region is 0 even though you do not yet know how to do the integral.
c) Write a definite integral whose value will be the moment about the x-axis of this region. You should realize that we have talked about evaluating this integral, but don't do it today.
d) Write a definite integral whose value will be the volume obtained by rotating this region about the x-axis. Use the disk method from last semester.

Remark for after the quiz. The proportionality relation between the moment about the x-axis and the volume of the solid obtained by rotation about the x-axis is true in general and goes back to Pappus of Alexandria around 300AD.

Solution

(a) Mass $=\delta \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x d x=\left.\delta(-\sin x)\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}}=\delta(1-(-1))=2 \delta$
(b) Moment $y=\delta \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x d x=0$ since the region is symmetric about the y-axis.
(c) Moment $_{x}=\delta \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} \cos ^{2} x d x$

The integral can be evaluated as follows: $\delta \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{4}(1+\cos (2 x))=\frac{\delta}{4} x-\left.\frac{1}{2} \sin 2 x\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}}=\frac{\pi \delta}{4}$
(d) Volume $=\pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos ^{2} x d x$

Math. 126 Quiz \#2

January 30, 2001
It is true that for positive integers $2,3,4, \ldots$ the following holds.

$$
\begin{equation*}
1 / 2+1 / 3+\cdots+1 / n<\ln n<1+1 / 2+1 / 3+\cdots+1 / n \tag{*}
\end{equation*}
$$

1. Explain why.
2. Given that $3^{5}=243$ and that $5.0<1 / 2+1 / 3+\cdots+1 / 243$ use $(*)$ with $n=3^{5}$ and the laws of logarithms to argue $e<3$.

Solution

1. By definition $\ln n=\int_{1}^{n} \frac{d x}{x}$. Recall $\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$ is the right-hand Riemann sum for the partition of $[1, n]$ into n pieces of length 1: $f^{\prime}(x)=\frac{-1}{x^{2}}<0.1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}$ is the left-hand Riemann sum for the partition of $[1, n]$ into n pieces of length 1 . The graph of $f(x)=\frac{1}{x}$ is decreasing since $f^{\prime}(x)=\frac{-1}{x^{2}}<0$, so the right-hand Riemann sum is less than the integral and the left hand Riemann sum is greater. Hence $\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}<\ln n<1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n-1}<1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}$.
2. Using the facts given, we see $5.0<\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{3^{5}}<\ln 3^{5}$. Hence $5.0<\ln 3^{5}=5 \cdot \ln 3$ and therefore $1<\ln 3$. Since $\ln e=1$ we see $\ln e<\ln 3$ and since \ln is an increasing function $\left(\frac{d \ln x}{d x}=\frac{1}{x}>0\right) e<3$.

Math. 126 Quiz \#3

February 6, 2001

1. Solve $6^{5 k}=4$. Leave your answer as a quotient involving numbers and natural logs of numbers
2. Compute $\frac{d y}{d x}$ where $y=x^{e^{x}}$.

Solution

1. $\ln 6^{5 k}=\ln 4$ so $5 k \ln 6=\ln 4$ or $k=\frac{\ln 4}{5 \ln 6}$
2. Rewrite $y=x^{e^{x}}=e^{e^{x} \ln x}$ so $\frac{d y}{d x}=\left(e^{e^{x} \ln x}\right) \frac{d e^{x} \ln x}{d x}$.
$\frac{d e^{x} \ln x}{d x}=e^{x} \ln x+e^{x} \frac{1}{x}$, so
$\frac{d y}{d x}=x^{e^{x}}\left(e^{x} \ln x+\frac{e^{x}}{x}\right)$

Math. 126 Quiz \#4

February 13, 2001
Solve the initial value problem

$$
\begin{gathered}
x \frac{d y}{d x}=x^{2} \cos x-y \\
y(\pi)=1
\end{gathered}
$$

Solution

First put it in standard form: $\frac{d y}{d x}+\frac{y}{x}=x \cos x$ Then $P=\frac{1}{x}$ and $Q=x \cos x$. Compute $\int P d x=\ln x+C$ so we may take $v=e^{\ln x}=x$. Then $\int v Q d x=\int \cos x d x=\sin x+C$.
Hence $y=\frac{1}{v} \int v Q d x=\frac{\sin x}{x}+\frac{C}{x}$ so $y(\pi)=\frac{\sin \pi}{\pi}+\frac{C}{\pi}=\frac{C}{\pi}=1$. Hence $C=\pi$ and

$$
y=\frac{\sin x}{x}+\frac{\pi}{x}
$$

Math. 126 Quiz \#5

February 27, 2001
Evaluate the integral

$$
\int \sin (\sqrt{x}) d x
$$

Hint: First do a substitution and then an integration by parts.

Solution

$$
\begin{aligned}
& \begin{array}{l}
\text { Substitute } w=\sqrt{x} \text { : then } d w=\frac{d x}{2 \sqrt{x}} \\
\int \sin (\sqrt{x}) d x=2 \int w \sin (w) d w
\end{array} \\
& \begin{array}{cc}
u=w & d u=d w \\
\text { Parts: } \\
d v=\sin (w) d w & v=-\cos (w)
\end{array} \text { so } \\
& 2 \int w \sin (w) d w=-2 w \cos w+2 \int \cos w d w \\
& =-2 w \cos w+2 \sin w+C
\end{aligned}
$$

Finally

$$
\int \sin (\sqrt{x}) d x=-2 \sqrt{x} \cos \sqrt{x}+2 \sin \sqrt{x}+C
$$

Math. 126 Quiz \#6

March 6, 2001
Expand

$$
\frac{2 x^{3}-2 x^{2}+3 x+1}{\left(x^{2}-x-2\right)\left(x^{2}+1\right)}
$$

as a sum of partial fractions.

Solution

$$
\begin{gathered}
\frac{2 x^{3}-2 x^{2}+3 x+1}{\left(x^{2}-x-2\right)\left(x^{2}+1\right)}=\frac{A}{(x-2)}+\frac{B}{(x+1)}+\frac{C x+D}{\left(x^{2}+1\right)} \\
2 x^{3}-2 x^{2}+3 x+1=A(x+1)\left(x^{2}+1\right)+B(x-2)\left(x^{2}+1\right)+(C x+D)(x+1)(x-2)
\end{gathered}
$$

Equate coefficients:

$$
\begin{aligned}
& x^{3}: 2=A+B+C \\
& x^{2}:-2=A-2 B+D-C \\
& x^{1}: 3=A+B-2 C-D \\
& x^{0}: 1=A-2 B-2 D
\end{aligned}
$$

From $x^{3}: A=2-B-C$ so the other equations become

$$
\begin{array}{ll}
x^{2}: \quad & -2=2-B-C-2 B+D-C \\
& -4=-3 B-2 C+D \\
x^{1}: \quad 3=2-B-C+B-2 C-D \\
& 1=-3 C-D \\
x^{0}: \quad 1=2-B-C-2 B-2 D \\
& -1=-3 B-2 D
\end{array}
$$

From $x^{1}: D=-3 C-1$ so

$$
\begin{array}{ll}
x^{2}: \quad-4=-3 B-2 C+-3 C-1 \\
& -3=-3 B-5 C \\
x^{0}: \quad-1=-3 B-2(-3 C-1) \\
& -3=-3 B+6 C
\end{array}
$$

It follows that $C=0$ and $B=1$, whence $D=-1$ and $A=1$.
Plug in:

$$
\begin{aligned}
& x=2: 16-8+6+1=A(3)(5) \text { or } 15=15 A \text { or } A=1 . \\
& x=-1:-2-2-3+1=B(-3)(2) \text { or }-6=(-6) B \text { or } B=1 \\
& x=0: 1=A+(-2) B+(-2) D \text { or } 1=-1+(-2) D \text { or } D=-1 \\
& x=1: 2-2+3+1=A(2)(2)+B(-1)(2)+(C+D)(2)(-1) \text { or } 4=4-2-2(C-1)
\end{aligned}
$$ or $2=2-2 C$ or $C=0$.

Math 126, Quiz \#7

March 27, 2001
Which improper integrals below converge and which diverge? A brief indication of your reasoning should be given.
a) $\int_{0}^{\infty} e^{-x^{3}} d x$
b) $\int_{0}^{\infty} \frac{1}{\sqrt[3]{x^{2}+1}} d x$

Solution

a) $\int_{0}^{\infty} e^{-x^{3}} d x$ converges if and only if $\int_{1}^{\infty} e^{-x^{3}} d x$ converges.

On the interval $[1, \infty), x \geq 1$ so $x^{2} \geq 1$ and $x^{3} \geq x$ so $e^{x} \leq e^{x^{3}}$ so $e^{-x^{3}} \leq e^{-x}$. Now $\int_{1}^{\infty} e^{-x} d x$ converges since $\lim _{t \rightarrow \infty} \int_{1}^{t} e^{-x} d x=\lim _{t \rightarrow \infty}-\left.e^{-x}\right|_{1} ^{t}=e^{-1}-\lim _{t \rightarrow \infty} e^{-t}=e^{-1}-0$. By the first comparison test for improper integrals, $\int_{1}^{\infty} e^{-x^{3}} d x$ converges and hence so does $\int_{0}^{\infty} e^{-x^{3}} d x$.
b) Roughly speaking $\frac{1}{\sqrt[3]{x^{2}+1}}$ behaves near ∞ like $x^{-2 / 3}$. More precisely,
$\lim _{x \rightarrow \infty} \frac{\frac{1}{\sqrt[3]{x^{2}+1}}}{x^{-2 / 3}}=\lim _{x \rightarrow \infty} \frac{x^{2 / 3}}{\sqrt[3]{x^{2}+1}}=\lim _{x \rightarrow \infty} \frac{1}{\sqrt[3]{1+\frac{1}{x^{2}}}}=1$. Since $0<1<\infty$ we would like to use the limit comparison test, comparing the integral for $\frac{1}{\sqrt[3]{x^{2}+1}}$ with the one for $x^{-2 / 3}$. Annoyingly, $x^{-2 / 3}$ has an additional singularity at 0 so we proceed as follows.
$\int_{0}^{\infty} \frac{1}{\sqrt[3]{x^{2}+1}} d x$ converges if and only if $\int_{1}^{\infty} \frac{1}{\sqrt[3]{x^{2}+1}} d x$ converges and by the limit comparison test for improper integrals, $\int_{1}^{\infty} \frac{1}{\sqrt[3]{x^{2}+1}} d x$ converges if and only if $\int_{1}^{\infty} x^{-2 / 3} d x$ converges.

But $\int_{1}^{\infty} x^{-2 / 3} d x=\left.\lim _{t \rightarrow \infty} \frac{x^{1 / 3}}{1 / 3}\right|_{1} ^{t} \lim _{t \rightarrow \infty} 3-3 t^{1 / 3}=3-\infty$ so $\int_{1}^{\infty} x^{-2 / 3} d x$ diverges and hence so does $\int_{0}^{\infty} \frac{1}{\sqrt[3]{x^{2}+1}} d x$.

