January 23, 2001

Consider the region below the curve $y = \cos x$ between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ and above the x-axis. Assume the density is constant, δ .

- a) Find the mass of this region.
- b) Write a definite integral whose value will be the moment about the y-axis of this region. Give a short reason why the moment about the y-axis of this region is 0 even though you do not yet know how to do the integral.
- c) Write a definite integral whose value will be the moment about the x-axis of this region. You should realize that we have talked about evaluating this integral, but don't do it today.
- d) Write a definite integral whose value will be the volume obtained by rotating this region about the x-axis. Use the disk method from last semester.

Remark for after the quiz. The proportionality relation between the moment about the x-axis and the volume of the solid obtained by rotation about the x-axis is true in general and goes back to Pappus of Alexandria around 300AD.

Solution

(a)
$$Mass = \delta \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx = \delta(-\sin x) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \delta(1 - (-1)) = 2\delta$$

- (b) $Moment_y = \delta \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x \ dx = 0$ since the region is symmetric about the y-axis.
- (c) $Moment_x = \delta \int_{-\frac{\pi}{2}}^{\frac{\pi^2}{2}} \frac{1}{2} \cos^2 x \ dx$

The integral can be evaluated as follows: $\delta \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{4} \left(1 + \cos(2x) \right) = \frac{\delta}{4} x - \frac{1}{2} \sin 2x \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{\pi \delta}{4}$

(d)
$$Volume = \pi \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^2 x \ dx$$

January 30, 2001

It is true that for positive integers 2, 3, 4, ... the following holds.

(*)
$$1/2 + 1/3 + \dots + 1/n < \ln n < 1 + 1/2 + 1/3 + \dots + 1/n$$

- 1. Explain why.
- 2. Given that $3^5 = 243$ and that $5.0 < 1/2 + 1/3 + \cdots + 1/243$ use (*) with $n = 3^5$ and the laws of logarithms to argue e < 3.

Solution

- 1. By definition $\ln n = \int_1^n \frac{dx}{x}$. Recall $\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ is the right-hand Riemann sum for the partition of [1,n] into n pieces of length 1: $f'(x) = \frac{-1}{x^2} < 0$. $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1}$ is the left-hand Riemann sum for the partition of [1,n] into n pieces of length 1. The graph of $f(x) = \frac{1}{x}$ is decreasing since $f'(x) = \frac{-1}{x^2} < 0$, so the right-hand Riemann sum is less than the integral and the left hand Riemann sum is greater. Hence $\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \ln n < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-1} < 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$.
- 2. Using the facts given, we see $5.0 < \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{3^5} < \ln 3^5$. Hence $5.0 < \ln 3^5 = 5 \cdot \ln 3$ and therefore $1 < \ln 3$. Since $\ln e = 1$ we see $\ln e < \ln 3$ and since \ln is an increasing function $(\frac{d \ln x}{dx} = \frac{1}{x} > 0)$ e < 3.

February 6, 2001

- 1. Solve $6^{5k} = 4$. Leave your answer as a quotient involving numbers and natural logs
- of numbers, 2. Compute $\frac{dy}{dx}$ where $y = x^{e^x}$.

Solution

1.
$$\ln 6^{5k} = \ln 4$$
 so $5k \ln 6 = \ln 4$ or $k = \frac{\ln 4}{5 \ln 6}$

1.
$$\ln 6^{5k} = \ln 4$$
 so $5k \ln 6 = \ln 4$ or $k = \frac{\ln 4}{5 \ln 6}$
2. Rewrite $y = x^{e^x} = e^{e^x \ln x}$ so $\frac{dy}{dx} = (e^{e^x \ln x}) \frac{d e^x \ln x}{dx}$.

$$\frac{d e^x \ln x}{dx} = e^x \ln x + e^x \frac{1}{x}, \text{ so}$$
$$\frac{dy}{dx} = x^{e^x} \left(e^x \ln x + \frac{e^x}{x} \right)$$

Math. 126 Quiz #4

February 13, 2001

Solve the initial value problem

$$x\frac{dy}{dx} = x^2 \cos x - y$$
$$y(\pi) = 1$$

First put it in standard form: $\frac{dy}{dx} + \frac{y}{x} = x \cos x$

Then $P = \frac{1}{x}$ and $Q = x \cos x$. Compute $\int P dx = \ln x + C$ so we may take $v = e^{\ln x} = x$.

Then $\int vQdx = \int \cos x \, dx = \sin x + C$.

Hence $y = \frac{1}{v} \int vQdx = \frac{\sin x}{x} + \frac{C}{x}$ so $y(\pi) = \frac{\sin \pi}{\pi} + \frac{C}{\pi} = \frac{C}{\pi} = 1$. Hence $C = \pi$ and

$$y = \frac{\sin x}{x} + \frac{\pi}{x}$$

February 27, 2001

Evaluate the integral

$$\int \sin(\sqrt{x}\,)\,dx\;.$$

Hint: First do a substitution and then an integration by parts.

Substitute
$$w = \sqrt{x}$$
: then $dw = \frac{dx}{2\sqrt{x}}$, so $2\sqrt{x} \ dw = dx$ and $2wdw = dx$. Hence
$$\int \sin(\sqrt{x}) \ dx = 2 \int w \sin(w) \ dw$$
Parts: $u = w \qquad du = dw$

$$dv = \sin(w) dw \qquad v = -\cos(w)$$

$$2 \int w \sin(w) \ dw = -2w \cos w + 2 \int \cos w \ dw$$

$$= -2w \cos w + 2 \sin w + C$$

Finally

$$\int \sin(\sqrt{x}) dx = -2\sqrt{x}\cos\sqrt{x} + 2\sin\sqrt{x} + C.$$

March 6, 2001

Expand

$$\frac{2x^3 - 2x^2 + 3x + 1}{(x^2 - x - 2)(x^2 + 1)}$$

as a sum of partial fractions.

Solution

$$\frac{2x^3 - 2x^2 + 3x + 1}{(x^2 - x - 2)(x^2 + 1)} = \frac{A}{(x - 2)} + \frac{B}{(x + 1)} + \frac{Cx + D}{(x^2 + 1)}$$
$$2x^3 - 2x^2 + 3x + 1 = A(x + 1)(x^2 + 1) + B(x - 2)(x^2 + 1) + (Cx + D)(x + 1)(x - 2)$$

Equate coefficients:

$$x^{3}:2 = A + B + C$$

 $x^{2}:-2 = A - 2B + D - C$
 $x^{1}:3 = A + B - 2C - D$
 $x^{0}:1 = A - 2B - 2D$

From x^3 : A = 2 - B - C so the other equations become

$$x^{2}: -2 = 2 - B - C - 2B + D - C$$

$$-4 = -3B - 2C + D$$

$$x^{1}: 3 = 2 - B - C + B - 2C - D$$

$$1 = -3C - D$$

$$x^{0}: 1 = 2 - B - C - 2B - 2D$$

$$-1 = -3B - 2D$$

From
$$x^1$$
: $D = -3C - 1$ so
$$x^2: -4 = -3B - 2C + -3C - 1$$
$$-3 = -3B - 5C$$
$$x^0: -1 = -3B - 2(-3C - 1)$$
$$-3 = -3B + 6C$$

It follows that C=0 and B=1, whence D=-1 and A=1.

Plug in:

$$x=2:16-8+6+1=A(3)(5) \text{ or } 15=15A \text{ or } A=1\ .$$

$$x=-1:-2-2-3+1=B(-3)(2) \text{ or } -6=(-6)B \text{ or } B=1\ .$$

$$x=0:1=A+(-2)B+(-2)D \text{ or } 1=-1+(-2)D \text{ or } D=-1\ .$$

$$x=1:2-2+3+1=A(2)(2)+B(-1)(2)+(C+D)(2)(-1) \text{ or } 4=4-2-2(C-1) \text{ or } 2=2-2C \text{ or } C=0\ .$$

Math 126, Quiz #7 March 27, 2001

Which improper integrals below converge and which diverge? A brief indication of your reasoning should be given.

a)
$$\int_0^\infty e^{-x^3} dx$$

b)
$$\int_0^\infty \frac{1}{\sqrt[3]{x^2 + 1}} dx$$

Solution

a) $\int_0^\infty e^{-x^3} dx$ converges if and only if $\int_1^\infty e^{-x^3} dx$ converges.

On the interval $[1,\infty)$, $x \ge 1$ so $x^2 \ge 1$ and $x^3 \ge x$ so $e^x \le e^{x^3}$ so $e^{-x^3} \le e^{-x}$. Now $\int_{1}^{\infty} e^{-x} dx \text{ converges since } \lim_{t \to \infty} \int_{1}^{t} e^{-x} dx = \lim_{t \to \infty} -e^{-x} \Big|_{1}^{t} = e^{-1} - \lim_{t \to \infty} e^{-t} = e^{-1} - 0. \text{ By}$ the first comparison test for improper integrals, $\int_{1}^{\infty} e^{-x^3} dx$ converges and hence so does

$$\int_0^\infty e^{-x^3} \ dx.$$

b) Roughly speaking $\frac{1}{\sqrt[3]{r^2+1}}$ behaves near ∞ like $x^{-2/3}$. More precisely,

 $\lim_{x \to \infty} \frac{\frac{1}{\sqrt[3]{x^2 + 1}}}{x^{-2/3}} = \lim_{x \to \infty} \frac{x^{2/3}}{\sqrt[3]{x^2 + 1}} = \lim_{x \to \infty} \frac{1}{\sqrt[3]{1 + \frac{1}{x^2}}} = 1. \text{ Since } 0 < 1 < \infty \text{ we would like to}$

use the limit comparison test, comparing the integral for $\frac{1}{\sqrt[3]{x^2+1}}$ with the one for $x^{-2/3}$.

Annoyingly, $x^{-2/3}$ has an additional singularity at 0 so we proceed as follows.

 $\int_0^\infty \frac{1}{\sqrt[3]{x^2+1}} dx$ converges if and only if $\int_1^\infty \frac{1}{\sqrt[3]{x^2+1}} dx$ converges and by the

limit comparison test for improper integrals, $\int_{1}^{\infty} \frac{1}{\sqrt[3]{x^2+1}} dx$ converges if and only if

$$\int_{1}^{\infty} x^{-2/3} dx \text{ converges.}$$

But $\int_{1}^{\infty} x^{-2/3} dx = \lim_{t \to \infty} \frac{x^{1/3}}{1/3} \Big|_{1}^{t} \lim_{t \to \infty} 3 - 3t^{1/3} = 3 - \infty$ so $\int_{1}^{\infty} x^{-2/3} dx$ diverges and

hence so does
$$\int_0^\infty \frac{1}{\sqrt[3]{x^2+1}} dx.$$