13. Find the center of mass (centroid) of the region bounded by the curves y = cosz,
y=0,z=—5 and z = 3.

You may use symmetry as part of the justification for your answer.

First we find the area A = /

1
cos(x) dzx. The alternative of A = / 2 arccos(y) dy
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does not look as easy. Then M, = / cos(x) dx and M, = / x cos(x) dx. By

symmetry, M, = 0: the integral can also be done by parts. A = sin(a;)‘%1 =1—(-1)=2.
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Hence the coordinates of the center of mass are at (Ty’ 7) = (0, g)

14. Solve the initial value problem
vy +aryty=e”
2

y(1) = p

This is a linear differential equation. First we bring the equation to the standard form
by dividing by x. We get:

dy 1
hut: 14 Yy =e®
()=

We identify P(z) = (1+ 1) and Q(z) = ©
We define
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The solution for the differential equation is:

1 1
Evaluating at z = 1, we get 2 = y(1) = 1tC’
which implies C' = 1,1 so the answer is
2
y= T er




dx is conver-
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15. Determine whether or not the improper integral / COS(xE)) 4+
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gent. To receive credit for this problem you must justify your answer.

2 cos(x?) + 100
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so we turn to a comparison theorem. Note first that —1 < cos(x?) < 1 so

We have no hope of evaluating the indefinite integral / dx directly
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for x > 1. Hence we can compare our integral with either —— dx or — dx.
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suffices to evaluate / 57 dz. Since ?1 > 1 this integral converges, hence does the
1 X
original one.
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In more detall, /; W dl‘ = tli}rglo . W diL' = tll}rglo m = tli},go m =
1 1

1 T
4— tli)rgo Yz 4 so /1 Y dx converges.



