Honor Code is in effect for this examination. All work is to be your									
xam	tors. lasts for o								
		ame is on eve ve all 10 pag			ecome detached.				
		Go	ood Luck!						
PLE	EASE MA	RK YOUR A	ANSWERS V	WITH AN X	, not a circle!				
1.	(a)	(b)	(c)	(d)	(e)				
2.	(a)	(b)	(c)	(d)	(e)				
3.	(a)	(b)	(c)	(d)	(e)				
4.	(a)	(b)	(c)	(d)	(e)				
5.	(a)	(b)	(c)	(d)	(e)				
6.	(a)	(b)	(c)	(d)	(e)				
7.	(a)	(b)	(c)	(d)	(e)				
8.	(a)	(b)	(c)	(d)	(e)				
9.	(a)	(b)	(c)	(d)	(e)				
10.	(a)	(b)	(c)	(d)	(e)				
11.	(a)	(b)	(c)	(d)	(e)				
12.	(a)	(b)	(c)	(d)	(e)				

14.

15.

Total:

Multiple Choice

1.(5 pts.) Let $x = \sin(9t)$ and $y = \cos(9t)$. Then $\frac{dy}{dx} = ?$

(a) $81 \sec^2(9t)$ (b) $-\tan(9t)$ (c) $9\tan(t)$ (d) $\tan(9t)$ (e) $\cot(9t)$

2.(5 pts.) Find the points on the curve $x = t^2$, $y = t^2 - 2t$ where the tangent line is horizontal.

- (a) (x,y) = (2,1) (b) (x,y) = (1,1) (c) (x,y) = (1,-1)
- (d) (x,y) = (1,2) (e) (x,y) = (2,-1)

3.(5 pts.) Find the length of the curve $x = 4e^{\frac{t}{2}}$, $y = e^t - 1$, $0 \le t \le 1$.

- (a) $\int_0^1 \sqrt{e^{2t} 14e^t + 1} dt$ (b) $\int_0^1 \sqrt{1 + e^{2t}} dt$
- (c) $\int_0^1 \sqrt{e^{2t} + 4e^t} dt$ (d) $\int_0^1 \sqrt{e^{2t} + 14e^t + 1} dt$
- (e) $\int_0^1 \sqrt{1+4e^t} dt$

4.(5 pts.) Find the area of the surface obtained by rotating the curve $x = 3t^2$, $y = t^3 - 3t$, $0 \le t \le 1$ around the y-axis.

- (a) 3 (b) $\frac{48}{5}\pi$ (c) 18π (d) 1
- (e) 0

5.(5 pts.) Find $\sum_{n=0}^{\infty} 3\left(\frac{-2}{5}\right)^n$.

(a) $\frac{3}{5}$ (b) $\frac{6}{5}$ (c) $\frac{5}{3}$ (d) $\frac{15}{7}$ (e) $\frac{17}{5}$

6.(5 pts.) Consider the parabola with vertex (0,0), axis the x-axis and passing through (1, -4). Which point below is the focus of this parabola?

- (a) (4,0)
- (b) (-4,0) (c) (-2,0) (d) (2,0)
- (e) (1,-2)

7.(5 pts.) Given the sequence $s_n = \frac{9n+1}{10n+9}$, compute $\lim_{n\to\infty} s_n$.

- (a) $\frac{9}{10}$
- (b) 0 (c) $\frac{10}{9}$ (d) $+\infty$
- (e) $\frac{1}{9}$

8.(5 pts.) Evaluate the sum $\sum_{n=1}^{\infty} \left(\frac{1}{n^{100}} - \frac{1}{(n+1)^{100}} \right)$

- (b) $+\infty$
- (c)
- (d) Divergent but bounded

(e) 1

9.(5 pts.) Let $s = \sum_{n=1}^{\infty} \frac{1}{n^3}$, $s_n = \sum_{n=1}^{\infty} \frac{1}{i^3}$ and $R_n = s - s_n$. Use the integral test to estimate R_n .

- (a) $\frac{1}{2} \frac{1}{(n+1)^3} \le R_n \le \frac{1}{2} \frac{1}{n^3}$
- (b) $\frac{1}{3} \frac{1}{(n+1)^3} \le R_n \le \frac{1}{3} \frac{1}{n^3}$
- (c) $\frac{1}{(n+1)^3} \le R_n \le \frac{1}{n^3}$
- (d) $\frac{1}{2} \frac{1}{(n+1)^2} \le R_n \le \frac{1}{2} \frac{1}{n^2}$
- (e) $\frac{1}{(n+1)^2} \le R_n \le \frac{1}{n^2}$

Use Comparison Tests to determine which **one** of the following series is **10.**(5 pts.) divergent.

- (a) $\sum_{n=1}^{\infty} \frac{1}{n^2 + 8}$ (b) $\sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{1}{2}\right)^n$ (c) $\sum_{n=1}^{\infty} 7\left(\frac{5}{6}\right)^n$

- (d) $\sum_{n=3}^{\infty} \frac{1}{n^3+1}$ (e) $\sum_{n=3}^{\infty} \frac{n^2-1}{n^3+100}$

11.(5 pts.) The series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3}$ is an alternating series which satisfies the conditions of the alternating series test. Find the smallest number k on the list below so that the k-th partial sum is within $\frac{1}{1.000}$ of the actual sum.

- (a) 20
- (b) 10
- (c) 15
- (d) 25

(e) 50

12.(5 pts.) Given that
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$
 it follows that $\sum_{n=1}^{\infty} \frac{1}{(2n)^2} = \frac{1}{4} \left(\sum_{n=1}^{\infty} \frac{1}{n^2} \right) = \frac{\pi^2}{24}$. Then $\sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = 1 + \frac{1}{9} + \frac{1}{25} + \dots = ?$

- (a) ln 2
- (b) $\frac{3\pi^2}{8}$ (c) $\frac{2\pi^2}{9}$ (d) $\frac{\pi^2}{8}$ (e) $\frac{\pi^2}{9}$

Partial Credit

You must show your work on the partial credit problems to receive credit!

13.(13 pts.) Determine whether the series

$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 + 1}{n^3 - 9}$$

is absolutely convergent, conditionally convergent or divergent. The correct answer with no justification is worth 2 points.

Find the radius of convergence and interval of convergence of the power **14.**(13 pts.) series

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} (x-3)^n$$

The correct answer with no justification is worth 2 points.

15.(14 pts.) Find the power series centered at the origin for $f(x) = \frac{1}{(2-x)^2}$.

Hint: f(x) is related to the derivative of a series you should know. The correct answer with no justification is worth 2 points.

			Exam III il 23, 2002		
Ionor	Code is	in effect for	this examina	tion. All wor	rk is to be your
lcula xam	tors. lasts for o	one hour.			
re th	at your n	ame is on ev			ecome detached.
re tn	at you na		ges of the test ood Luck!	τ.	
DIE	ACE MA			MTH AN V	not a circle!
					, not a circle!
1.	(a)	(•)	(c)	(d)	(e)
2.	(a)	(b)	(•)	(d)	(e)
3.	(a)	(b)	(•)	(d)	(e)
4.	(a)	(•)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(•)	(e)
6.	(•)	(b)	(c)	(d)	(e)
7.	(ullet)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(•)
9.	(a)	(b)	(c)	(ullet)	(e)
10.	(a)	(b)	(c)	(d)	(●)
11.	(a)	(ullet)	(c)	(d)	(e)
12.	(a)	(b)	(c)	(•)	(e)
			DO NOT W	RITE IN T	HIS BOX!
		Tota	al multiple cl	noice:	

15.

Total: