13. Determine whether the series

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}+1}{n^{3}-9}
$$

is absolutely convergent, conditionally convergent or divergent.

We first check for absolute convergence. In other words, does $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{3}-9}$ converge or not? Use the Limit Comparison Test to compare our series to the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ which we know diverges. Compute $\lim _{n \rightarrow \infty} \frac{\frac{n^{2}+1}{n^{3}-9}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n\left(n^{2}+1\right)}{n^{3}-9}$. This is a rational function with the degree of the numerator (3) equal to the degree of the denominator. Hence the limit is the ration of the degree 3 coefficients or $\frac{1}{1}=1$. Since $0<1<\infty$, the Limit Comparison Test shows $\sum_{n=1}^{\infty} \frac{n^{2}+1}{n^{3}-9}$ divergses.

The series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}+1}{n^{3}-9}$ is alternating and $\lim _{n \rightarrow \infty} \frac{n^{2}+1}{n^{3}-9}=0$ since it is a limit of a rational function for which the degree of the numerator is less than the degree of the denominator. Finally, since $\frac{d \frac{x^{2}+1}{x^{3}-9}}{d x}=\frac{2 x\left(x^{3}-9\right)-\left(x^{2}+1\right)\left(3 x^{2}\right)}{\left(x^{3}-9\right)^{2}}=\frac{-x^{4}-3 x^{2}-18 x}{\left(x^{3}-9\right)^{2}}<0$ for $x>0$, the sequence $\frac{n^{2}+1}{n^{3}-9}$ is decreasing. Hence the Alternating Series Test shows $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}+1}{n^{3}-9}$ is convergent and therefore conditionally convergent.
14. Find the radius of convergence and interval of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}(x-3)^{n}
$$

Begin with the radius using either the Ratio method or the Root method. For the Ration method, compute
$\lim _{n \rightarrow \infty} \frac{\frac{|x-3|^{n+1}}{\sqrt{n+1}}}{\frac{|x-3|^{n}}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\sqrt{n+1}} \cdot|x-3|=|x-3|$.
For the Root method compute
$\lim _{n \rightarrow \infty} \sqrt[n]{\frac{|x-3|^{n}}{\sqrt{n}}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt[n]{\sqrt{n}}} \cdot|x-3|=\frac{1}{\sqrt{\lim _{n \rightarrow \infty} \sqrt[n]{n}}} \cdot|x-3|=|x-3|$.

Either of these calculations shows that the radius of convergence is 1.
To calculate the interval of convergence we need to evaluate the two series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}(1)^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$ and $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}(-1)^{n}=\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$.

The second series is a p-series with $p=1 / 2 \leq 1$ and so diverges. The first series is an alternating p-series with $p=1 / 2>0$ and so converges. Hence the interval of convergence is $(2,4]$.
15. Find the power series centered at the origin for $f(x)=\frac{1}{(2-x)^{2}}$. Hint: $f(x)$ is related to the derivative of a series you should know.

First note that $\frac{d \frac{1}{2-x}}{d x}=\frac{-1}{(2-x)^{2}} \cdot(-1)=\frac{1}{(2-x)^{2}}$. Next recall that you can figure out a power series for $\frac{1}{2-x}=\frac{1}{2} \cdot \frac{1}{1-(x / 2)}=\frac{1}{2} \cdot \sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n+1}}$. Taking derivatives we see $\frac{1}{(2-x)^{2}}=\sum_{n=1}^{\infty} \frac{n x^{n-1}}{2^{n+1}}$, or if you prefer $\sum_{n=0}^{\infty} \frac{(n+1) x^{n}}{2^{n+2}}$.

