The MacLaurin series for $\cos x$ is

$$
\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}
$$

a. What is the radius of convergence of this series?
(Just an answer is sufficient - no reason need be given.)
b. Write down the MacLaurin series for $\frac{\cos x-1}{x^{2}}$. Give a reason why it is the MacLaurin series.
c. Write down the MacLaurin series for the function $\int_{0}^{x} \cos t^{2} d t$.

For (a), the radius of convergence is ∞, a result you should memorize. To see why (which you were NOT asked to do), compute $\lim _{n \rightarrow \infty} \frac{\frac{x^{2 n+2}}{(2 n+2)!}}{\frac{x^{2 n}}{(2 n)!}}=\lim _{n \rightarrow \infty} \frac{(2 n)!}{(2 n+2)!)} \cdot|x|^{2}=$ $\lim _{n \rightarrow \infty} \frac{|x|^{2}}{(2 n+1)(2 n+2)}=0$.

For (b), $\cos x-1=\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}$ and hence $\frac{\cos x-1}{x^{2}}=\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n-2}}{(2 n)!}$. This is equal to $\sum_{n=0}^{\infty} \frac{(-1)^{n-1} x^{2 n}}{(2 n+2)!}$. Why is this the MacLaurin series for $\frac{\cos x-1}{x^{2}}$? The best answer is that by the calculations we just did, the series represents the function. The MacLaurin series for the power series is itself (that's a theorem) and since the series and the function are the same, the series is also the MacLaurin series for the function.

For (c), $\cos t^{2}=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{4 n}}{(2 n)!}$, so $\int_{0}^{x} \cos t^{2} d t=\int_{0}^{x} \sum_{n=0}^{\infty} \frac{(-1)^{n} t^{4 n}}{(2 n)!} d t=$ $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{4 n+1}}{(4 n+1)(2 n)!}$.

Math. 126 Quiz \#10 April 16, 2002

Show that $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n^{2}+n}}$ converges by checking the hypotheses of the Alternating Series Test.

Then show the calcualtions needed to find an m such that

$$
0<\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n^{2}+n}}-\sum_{n=1}^{m} \frac{(-1)^{n+1}}{\sqrt{n^{2}+n}}<0.01
$$

To see that the series converges using the Alternating Series Test, we need to show that $\lim _{n \rightarrow \infty} b_{n}=0$ and that $b_{n+1} \leq b_{n}$. First, note that

$$
b_{n}=\frac{1}{\sqrt{n^{2}+n}}
$$

Since

$$
\lim _{n \rightarrow \infty} \sqrt{n^{2}+n}=\infty
$$

we have that

$$
\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n^{2}+n}}=0
$$

To check that $b_{n+1} \leq b_{n}$, ask: Is

$$
\frac{1}{\sqrt{(n+1)^{2}+n+1}} \leq \frac{1}{\sqrt{n^{2}+n}} ?
$$

After clearing fractions and squaring, we see that the inequality holds if

$$
n^{2}+n \leq(n+1)^{2}+n+1
$$

holds. This second inequality is clearly true. (Note: another way is to show that $\frac{d}{d n} b_{n}=$ $-\frac{1}{2}\left(n^{2}+n\right)^{-\frac{3}{2}}(2 n+1)$ and this is clearly <0 for $n \geq 1$.)

Recall that $\left|R_{m}\right| \leq b_{m+1}$. Thus, for the error calculation, we need to solve

$$
b_{m+1}<0.01
$$

(Also, since

$$
0<\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n^{2}+n}}-\sum_{n=1}^{m} \frac{(-1)^{n+1}}{\sqrt{n^{2}+n}}
$$

note that m must be odd since the remainder has the same sign as b_{m+1}.)

Math. 126 Quiz \#9 April 9, 2002

For each of the series below, do two things. First compute $\lim _{n \rightarrow \infty} a_{n}$ and then use this calculation to say if you are certain that $\sum_{n=1}^{\infty} a_{n}$ diverges or if the limit calculation does
not suffice to say if the series converges or diverges. Just circle diverges or can not tell after the series for the second part of each question
A. $a_{n}=\frac{1}{n!}$:

Recall $n!=n(n-1) \cdots 2 \cdot 1$
a. $\lim _{n \rightarrow \infty} a_{n}=$
b. $\sum_{n=1}^{\infty} a_{n}$ diverges can not tell
B. $a_{n}=\frac{n}{1+\sqrt{n}}$:
a. $\lim _{n \rightarrow \infty} a_{n}=$
b. $\sum_{n=1}^{\infty} a_{n}$ diverges \quad can not tell

For A we note $0<\frac{1}{n!}=\frac{1}{n} \cdot \frac{1}{n-1} \cdots \frac{1}{2} \cdot \frac{1}{1}<\frac{1}{n}$ and since $\lim _{n \rightarrow \infty} \frac{1}{n}=0$, the Squeeze Theorem promises $\lim _{n \rightarrow \infty} \frac{1}{n!}=0$. This tells us nothing about whether the series $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges. (Remark: It is correct that the series does converge, in fact to $e-1$, but this calculation does not show it.)

For B we write $\frac{n}{1+\sqrt{n}}=\frac{\sqrt{n}}{\frac{1}{\sqrt{n}}+1}$ so $\lim _{n \rightarrow \infty} \frac{n}{1+\sqrt{n}}=\lim _{n \rightarrow \infty} \frac{\sqrt{n}}{\frac{1}{\sqrt{n}}+1}=\frac{\infty}{0+1}=\infty$. The Divergence Test shows that the series $\sum_{n=1}^{\infty} \frac{n}{1+\sqrt{n}}$ diverges.

Math. 126 Quiz \#8 April 2, 2002

Write an equation for the hyperbola which has foci at $(3,3)$ and $(3,11)$ and which has asymptotes $y=x+4$ and $y=10-x$. What are the coordinates of the vertices?

The center is halfway between the foci so has coordinates $(3,7)$. Thus $c=4$ since it is the distance from the center to a focus.

The vertices of the hyperbola are on the line $x=3$ since they lie on the line between the foci, so the equation has the form

$$
\frac{(y-7)^{2}}{a^{2}}-\frac{(x-3)^{2}}{b^{2}}=1
$$

where $16=c^{2}=a^{2}+b^{2}$.
The asymptotes have slope ± 1 from the slope-intercept form of the equation. The slopes are $\pm \frac{a}{b}$ for any hyperbola so $a=b$ and $16=2 a^{2}$ so $a^{2}=b^{2}=8$.

The vertices are a distance a from the center. Since $a^{2}=8, a=2 \sqrt{2}$ and the vertices are at $(3,7 \pm 2 \sqrt{2})$.

Math. 126 Quiz \#7 March 26, 2002

1. Write down a definite integral which gives the length of the curve $x(t)=t^{3}+4 t+1$, $y(t)=t^{4}+t^{2}$ for $0 \leq t \leq 5$. Do NOT attempt to evaluate either this integral or the integrals you will write down in parts 2 and 3 .
2. Write down a definite integral which gives the surface area of the surface of revolution obtained by rotating the parameterized curve in 1 around the x-axis.
3. Write down a definite integral which gives the surface area of the surface of revolution obtained by rotating the parameterized curve in 1 around the y-axis.

We have the curve $x(t)=t^{3}+4 t+1, y(t)=t^{4}+t^{2}$ for $0 \leq t \leq 5$.
Note $d s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\sqrt{\left(3 t^{2}+4\right)^{2}+\left(4 t^{3}+2 t\right)^{2}} d t$

1. The definite integral which gives the length of this curve is

$$
L=\int_{0}^{5} \sqrt{\left(3 t^{2}+4\right)^{2}+\left(4 t^{3}+2 t\right)^{2}} d t
$$

2. The definite integral which gives the surface area of the surface of revolution obtained be rotating the parameterized curve around the x -axis is

$$
S=\int_{0}^{5} 2 \pi\left(t^{4}+t^{2}\right) \sqrt{\left(3 t^{2}+4\right)^{2}+\left(4 t^{3}+2 t\right)^{2}} d t
$$

since $t^{4}+t^{2}$ is the distance from the point $(x(t), y(t))$ on the curve to the x-axis.
3. The definite integral which gives the surface area of the surface of revolution obtained be rotating the parameterized curve around the y-axis is

$$
S=\int_{0}^{5} 2 \pi\left(t^{3}+4 t+1\right) \sqrt{\left(3 t^{2}+4\right)^{2}+\left(4 t^{3}+2 t\right)^{2}} d t
$$

since $t^{3}+4 t+1$ is the distance from the point $(x(t), y(t))$ on the curve to the y-axis.

Math. 126 Quiz \#6 March 5, 2002

Solve the initial value problem

$$
\begin{gathered}
x \frac{d y}{d x}=x^{2} \cos x+y \\
y(\pi)=1
\end{gathered}
$$

First, bring the equation to the canonical form:

$$
\begin{equation*}
\frac{d y}{d x}+\left(-\frac{1}{x}\right) y=x \cos x \tag{*}
\end{equation*}
$$

Next compute the integrating factor:

$$
I(x)=e^{\int-\frac{1}{x} d x}=e^{-\ln x}=\frac{1}{x}
$$

Multiply the equation $(*)$ by the integrating factor, $I(x)$, to obtain:

$$
\left(\frac{1}{x} y\right)^{\prime}=\cos x
$$

Integrate this:

$$
\frac{1}{x} y=\int \cos x d x=\sin x+C
$$

and thus

$$
y=x(\sin x+C)
$$

To determine C, compute $y(\pi)$ two ways:

$$
1=y(\pi)=\pi(\sin (\pi)+C)=\pi C
$$

so $C=\frac{1}{\pi}$ and the solution is:

$$
y=x\left(\sin x+\frac{1}{\pi}\right)
$$

Math. 126 Quiz \#5 February 26, 2002

Which improper integrals below converge and which diverge? Indicate your reasoning and be careful.
a) $\int_{0}^{\infty} \frac{1}{\sqrt{x^{3}}} d x$
b) $\int_{1}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$
(a)

$$
\begin{aligned}
\int_{0}^{\infty} \frac{1}{\sqrt{x^{3}}} d x & =\int_{0}^{1} \frac{1}{\sqrt{x^{3}}} d x+\int_{1}^{\infty} \frac{1}{\sqrt{x^{3}}} d x \\
& =\lim _{t \rightarrow 0+} \int_{t}^{1} \frac{1}{\sqrt{x^{3}}} d x+\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{\sqrt{x^{3}}} d x \\
& =\left.\lim _{t \rightarrow 0+} \frac{-2}{\sqrt{x}}\right|_{t} ^{1}+\left.\lim _{t \rightarrow \infty} \frac{-2}{\sqrt{x}}\right|_{1} ^{t} \\
& =-2+\lim _{t \rightarrow 0+} \frac{2}{\sqrt{t}}+\lim _{t \rightarrow \infty} \frac{-2}{\sqrt{t}}+2 \\
& =+\infty
\end{aligned}
$$

so $\int_{0}^{\infty} \frac{1}{\sqrt{x^{3}}} d x$ diverges.
b) Use the Comparison Theorem. Note $0 \leq \frac{\sin ^{2} x}{x^{2}} \leq \frac{1}{x^{2}}$ since $-1 \leq \sin x \leq 1$. Evaluate $\int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}} d x=\left.\lim _{t \rightarrow \infty} \frac{-1}{x}\right|_{1} ^{t}=\lim _{t \rightarrow \infty} \frac{-1}{t}+1=1+0$. Since $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ converges and since $0 \leq \frac{\sin ^{2} x}{x^{2}} \leq \frac{1}{x^{2}}, \int_{1}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$ converges.

Math. 126 Quiz \#4 February 19, 2002

Expand

$$
\frac{2 x^{3}+5 x^{2}+5 x+5}{(x+1)^{2}\left(x^{2}+2\right)}
$$

using the method of partial fractions.
Remark: Indicate your setup clearly since half the points are for the correct setup.

Setup:

$$
\frac{2 x^{3}+5 x^{2}+5 x+5}{(x+1)^{2}\left(x^{2}+2\right)}=\frac{A}{x+1}+\frac{B}{(x+1)^{2}}+\frac{C x+D}{x^{2}+2}
$$

Solve: Clear denominators by multiplying through by $(x+1)^{2}\left(x^{2}+2\right)$:

$$
\begin{align*}
& 2 x^{3}+5 x^{2}+5 x+5=A(x+1)\left(x^{2}+2\right)+B\left(x^{2}+2\right)+(C x+D)(x+1)^{2} \tag{1}\\
& \quad=A\left(x^{3}+x^{2}+2 x+2\right)+B\left(x^{2}+2\right)+C\left(x^{3}+2 x^{2}+x\right)+D\left(x^{2}+2 x+1\right) \tag{2}
\end{align*}
$$

Set $x=-1$ in (1). This give $3=3 B$ so $B=1$.
Setting $B=1$ and collecting like terms in (2) gives the system of equations

$$
\begin{align*}
& 2=A+C \tag{3}\\
& 5=A+2 C+D+1 \\
& 5=2 A+C+2 D \tag{4}\\
& 5=2 A+D+2 \tag{5}
\end{align*}
$$

Solve: $C=2-A$ from (3); $D=3-2 A$ from (5); so (4) becomes

$$
5=2 A+(2-A)+2(3-2 A) ;
$$

so $3 A=3 ; A=1$. Then $C=2-A=1$ and $D=3-2 A=1$. Hence

$$
\frac{2 x^{3}+5 x^{2}+5 x+5}{(x+1)^{2}\left(x^{2}+2\right)}=\frac{1}{x+1}+\frac{1}{(x+1)^{2}}+\frac{x+1}{x^{2}+2}
$$

Math. 126 Quiz \#3 February 12, 2002
Evaluate the integral

$$
\int \sec ^{2}(\sqrt{x}) d x
$$

Hint: First do a substitution and then an integration by parts.

First, apply the substitution $t=\sqrt{x}$, so $x=t^{2}$ and $d x=2 t d t$ (or $d t=\frac{d x}{2 \sqrt{x}}, d x=2 \sqrt{x} d t=2 t d t$).

Then $\int \sec ^{2}(\sqrt{x}) d x=\int \sec ^{2} t \cdot 2 t d t=2 \int t \sec ^{2} t d t$.
To compute $\int t \sec ^{2} t d t$ use integration by parts with

$$
\begin{array}{cc}
d v=\sec ^{2} t d t & v=\tan t \\
u=t & d u=d t
\end{array}
$$

so $\int t \sec ^{2} t d t=t \tan t-\int \tan t d t=t \tan t-\ln |\sec t|+C$.
Hence $\int \sec ^{2}(\sqrt{x}) d x=2(\sqrt{x} \tan (\sqrt{x})-\ln |\sec (\sqrt{x})|)+C$.
Remark: Some people computed $\int \tan t$ by substitution instead of from memory.
$\int \tan t d t=\int \frac{\sin t}{\cos t} d t=-\int \frac{d u}{u}=-\ln |\cos t|+C=\ln |\sec t|+C$ after the substitution $u=\cos t, d u=-\sin t d t$.

Math. 126 Quiz \#2 January 29, 2002

1. Solve the equation $3^{2 x}=5$ for x. An answer involving \ln of other numbers is fine.
2. Use logarithmic differentiation to find $\frac{d y}{d x}$ if

$$
y=\frac{\left(x^{2}-1\right)^{2.3}\left(x^{3}+2\right)^{1.1}}{\left(x^{2}+1\right)^{0.4}}
$$

1. $\ln \left(3^{2 x}\right)=\ln 5$
$2 x \ln 3=\ln 5$
$2 x=\frac{\ln 5}{\ln 3}$
$2 x=\frac{\ln 5}{2 \ln 3}$
2. $\ln y=\ln \left(\frac{\left(x^{2}-1\right)^{2.3}\left(x^{3}+2\right)^{1.1}}{\left(x^{2}+1\right)^{0.4}}\right)=\ln \left(\left(x^{2}-1\right)^{2.3}\right)+\ln \left(\left(x^{3}+2\right)^{1.1}\right)-\ln \left(\left(x^{2}+1\right)^{0.4}\right)$
$\ln y=2.3 \ln \left(x^{2}-1\right)+1.1 \ln \left(x^{3}+2\right)-0.4 \ln \left(x^{2}+1\right)$
Differentiating both sides,

$$
\begin{array}{r}
\frac{d}{d x}(\ln y)=\frac{d}{d x}\left(2.3 \ln \left(x^{2}-1\right)+1.1 \ln \left(x^{3}+2\right)-0.4 \ln \left(x^{2}+1\right)\right) \text { or } \\
\frac{1}{y} \frac{d y}{d x}=\frac{2.3(2 x)}{x^{2}-1}+\frac{1.1\left(3 x^{2}\right)}{x^{3}+2}-\frac{0.4(2 x)}{x^{2}+1}=\frac{(4.6) x}{x^{2}-1}+\frac{(3.3) x^{2}}{x^{3}+2}-\frac{(0.8) x}{x^{2}+1} \text { So } \\
\frac{d y}{d x}=\left(\frac{\left(x^{2}-1\right)^{2.3}\left(x^{3}+2\right)^{1.1}}{\left(x^{2}+1\right)^{0.4}}\right)\left(\frac{(4.6) x}{x^{2}-1}+\frac{(3.3) x^{2}}{x^{3}+2}-\frac{(0.8) x}{x^{2}+1}\right)
\end{array}
$$

Math. 126 Quiz \#1 January 22, 2002
The function, $f(x)=x^{3}-3 x^{2}+x$ for x in the interval $[-2,0]$, has an inverse function because f is strictly increasing on this interval.
a. What is the domain of the inverse function, f^{-1} ?
b. What is the value of the derivative of f^{-1} for $x=-5$?
a. Domain $\left(f^{-1}\right)=$ Range (f). Since f is increasing on $[-2,0]$ the range of f is $[f(-2), f(0)]$ which is $[-22,0]$.
b. First note that $f^{-1}(5)=y$ if and only if $-5=f(y)$, or $-5=x^{3}-3 x^{2}+x$ or $0=x^{3}-3 x^{2}+x+5$. Since $-5 \in[-22,0]$ there is precisely one solution to this equation in the interval $[-2,0]$ and by trial and error you find that $f(-1)=-5$. In other words, $f^{-1}(-5)=-1$.
Next compute $f^{\prime}(x)=3 x^{2}-6 x+1$.
Then $\left(f^{-1}\right)^{\prime}(-5)=\frac{1}{f^{\prime}\left(f^{-1}(-5)\right)}=\frac{1}{f^{\prime}(-1)}=\frac{1}{10}$.

