Multiple Choice

- **1.**(5 pts.) Evaluate $\int_{1}^{2} x^{3} \ln x \, dx$.
- (a) $4 \ln 2 \frac{15}{16}$ (b) $\frac{15}{16}$ (c) $4 \ln 2 \frac{1}{16}$ (d) $4 \ln 2$ (e) $2 \ln 2 \frac{15}{16}$

- **2.**(5 pts.) Compute $\int_0^{\pi/2} \sin(7x) \sin(3x) dx$

- (a) 0 (b) $\frac{1}{8}$ (c) $\frac{1}{7}$ (d) $\frac{1}{10}$ (e) $\frac{\pi}{2}$

- **3.**(5 pts.) Evaluate $\int_0^{\pi/2} \cos^3 x \ dx$

- (a) 0 (b) 1 (c) $\frac{\pi}{2}$
- (d) $\frac{1}{3}$ (e) $\frac{2}{3}$

- **4.**(5 pts.) Evaluate $\int_0^1 \frac{x}{(x^2+1)^{3/2}} dx$.

- (a) $1 \sqrt{2}$ (b) $\sqrt{2} 1$ (c) $1 \frac{\sqrt{2}}{2}$

- The integral diverges.
- **5.**(5 pts.) Evaluate $\int_0^1 x\sqrt{1-x^2} \ dx$.
- (a) $\frac{1}{6}$ (b) $\frac{1}{2}$ (c) $\frac{1}{3}$ (d) $\frac{3}{4}$

- **6.**(5 pts.) Compute $\int_0^1 \frac{1}{(x+1)(x+2)} dx$.
- (a) $\ln \frac{3}{2}$
- ln 2(b)
- $(c) \quad 0$
- (d) $\ln \frac{4}{3}$

- (e) The integral diverges.
- **7.**(5 pts.) Suppose that $|f''(x)| \leq 1$ for $0 \leq x \leq 2$. If E_M is the error in the Midpoint Rule using n subintervals, then $|E_M|$ is less than

- (b) 0 (c) $\frac{1}{3n^2}$ (d) $\frac{1}{12n^2}$ (e) $\frac{1}{24n^2}$

- **8.**(5 pts.) Evaluate the following integral $\int_{0}^{+\infty} xe^{-x^2} dx$.
- (a) 1

- (b) $\frac{1}{2}$
- Diverges and the limit is not ∞
- (d) Diverges and the limit is ∞

- (e) 2e
- You begin an experiment at 9am with a sample of 1000 bacteria. An hour later your population has doubled. Assuming exponential growth, what is the population at noon?
- $1000e^{-3}$ (a)
- (b) 8000
- (c) $1000e^3$
- (d) 4000
- (e) 32000
- **10.**(5 pts.) Compute the length of the curve $y = \frac{x^2}{2} \frac{\ln x}{4}$, $1 \le x \le 2$.
- (a) $6 + \frac{3 \ln 2}{4}$ (b) $\frac{\ln 2}{2}$ (c) $2 + \frac{3 \ln 2}{4}$ (d) $\frac{3}{2} + \frac{\ln 2}{4}$ (e) $+\infty$

- 11.(5 pts.) Find the area of the surface of revolution obtained by rotating the curve $y = 2\sqrt{x+1}$, $2 \le x \le 7$ about the x-axis.
- (a) $\frac{152\pi}{3}$ (b) $\frac{8\pi}{3}$ (c) $+\infty$ (d) $\frac{3\pi}{2}$

- 0

12.(5 pts.) Solve the initial value problem

$$\begin{cases} \frac{dy}{dx} = y^2\\ y(0) = -1 \end{cases}$$

(a)
$$y = -x^2$$
 (b) $y = 0$

(a)
$$y = -x^2$$
 (b) $y = 0$ (c) $y = \frac{1}{x+1}$ (d) $y = \frac{-1}{x}$ (e) $y = \frac{-1}{x+1}$

Partial Credit

You must show your work on the partial credit problems to receive credit!

Find the center of mass (centroid) of the region bounded by the curves $y=\cos x,\ y=0,\ x=-\frac{\pi}{2}$ and $x=\frac{\pi}{2}$. You may use symmetry as part of the justification for your answer.

14.(13 pts.) Solve the initial value problem

$$\begin{cases} xy' + xy + y = e^{-x} \\ y(1) = \frac{2}{e} \end{cases}$$

15.(14 pts.) Determine whether or not the improper integral $\int_{1}^{+\infty} \frac{2\cos(x^2) + 100}{x^{5/4}} dx$ is convergent. To receive credit for this problem you must justify your answer.

		N	ame: Al	NSWERS	
		In	structor:	ANSWER	S
			Exam II ch 19, 2002		
No calcula The exam Be sure th	tors. lasts for a at your n	one hour.	ery page in o	case pages be	rk is to be your ow ecome detached.
	v	- ~	od Luck!		
PLE	EASE MA	RK YOUR A	ANSWERS V	WITH AN X	, not a circle!
1.	(ullet)	(b)	(c)	(d)	(e)
2.	(ullet)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(●)
4.	(a)	(b)	(ullet)	(d)	(e)
5.	(a)	(b)	(ullet)	(d)	(e)
6.	(a)	(b)	(c)	(ullet)	(e)
7.	(a)	(b)	(ullet)	(d)	(e)
8.	(a)	(ullet)	(c)	(d)	(e)
9.	(a)	(ullet)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(●)	(e)

11.

12.

(a)

(b)

(b)

(c)

(c)

Total:

DO NOT WRITE IN THIS BOX!							
Total multiple choice:							
13.							
14.							
15.							

(d)

(d)

(e)

 (\bullet)