Multiple Choice

d
1.(5 pts.) Let x =sin(9t) and y = cos(9t). Then d—y =7
x

(a) 8lsec?(9t) (b) —tan(9t) (c) 9tan(t) (d) tan(9t) (e) cot(9t)

2.(5 pts.) Find the points on the curve z = t?, y = t2 — 2t where the tangent line is
horizontal.

(@)  (z,y) =(2,1) (b)  (z,y) =(1,1) () (z,y)=(@1,-1)

(d)  (z,y)=(1,2) () (z,9) =(2,-1)

~+

3.(5 pts.) Find the length of the curve z = 4e?, y=¢' — 1,0 <t < 1.

1 1
(a) / Vet —14et +1 dt (b) / V14 e2t dt
0 0
1 1
(c) / Vet +4det dt (d) / \/e2t + 14et +1 dt
0 0

(e) /01 V1+4et dt

4.(5 pts.) Find the area of the surface obtained by rotating the curve x = 3t2, y = 3 — 3t,
0 <t <1 around the y—axis.

() 3 (b) 4?7? (¢) 18 @ 1



6.(5 pts.) Consider the parabola with vertex (0,0), axis the x—axis and passing through
(1, —4). Which point below is the focus of this parabola?

(a) (47 0) (b) (_47 0) (C) (_27 O) (d) (27 0) (e) (17 _2)

9 1
7.(5 pts.) Given the sequence s, = 107;7:9, compute nh—>Holo Sn-
9 10 1
— b) 0 — d —
(o) (b © @ 4o @
1 1
8.(5 pts.) Evaluate the sum nz:l BCESNL
1 .
(a) 100 (b) 4o (¢c) O (d)  Divergent but bounded
(e) 1
9.(5 pts.) Let s = i 1 Sp = i z and R, = s — s,. Use the integral test to
estimate R,,.
1 1 11 1 1 11
<R,<-— Z <R, <=—
(&) 2(n+1)° — —2n3 (b) 3(n+1)° — 3n3
1 1 1 1 11
n 3 P < Rn S )
(© (n+1) —nd (d) 2(n+1)2_ 212
1 1
Rn )
(¢) (n+1) — n?

10.(5 pts.)  Use Comparison Tests to determine which one of the following series is
divergent.
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0 -1 n—1
11.(5 pts.) The series Z % is an alternating series which satisfies the conditions
n

n=1

of the alternating series test. Find the smallest number k£ on the list below so that the

1
k-th partial sum is within 1,000 of the actual sum.
(a) 20 (b) 10 (¢) 15 (d) 25
(e) 50
12.(5 pts.) Given that i ! G it follows that i ! ! i ! Gl
. . Vi — = — W = - — | = —
P G 2o (2n)? T A\& n2) T u
> 1 11
Th — =14+ -+ =4 =7
enz_:o Gnt12 a9t T
3 2 92 2 2 2
(2) In2 (b) = (© - @ @ &

Partial Credit
You must show your work on the partial credit problems to receive credit!

13.(13 pts.) Determine whether the series
f: 1) n?+1
— n®—9

is absolutely convergent, conditionally convergent or divergent. The correct answer with
no justification is worth 2 points.

14.(13 pts.)  Find the radius of convergence and interval of convergence of the power
series

ni::l (_\/15)71 (x —3)"

The correct answer with no justification is worth 2 points.

15.(14 pts.) Find the power series centered at the origin for f(z) = =27

Hint: f(x) is related to the derivative of a series you should know.
The correct answer with no justification is worth 2 points.
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Be sure that you have all 10 pages of the test.

Good Luck!
PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!
L (a) (¢) (c) (d) (e)
2. (a) (b) (¢) (d) (e)
3. (a) (b) (¢) (d) (e)
4. (a) (¢) (c) (d) (e)
5. (a) (b) () (¢) ()
6. (o) (b) (c) (d) (e)
7. (e (b) (c) (d) (e)
8. (a) (b) () (d) (¢)
9. (a) (b) (c) (¢) (e)
10. (a) (b) () (d) (¢)
1. (a) (¢) (c) (d) ()
12. - (a) (b) (c) (¢) (e)

DO NOT WRITE IN THIS BOX!

Total multiple choice:

13.

14.

15.

Total:




